W Generalitat de Catalunya T
MY Departament de Justicia

Especificacio
d’Arquitectura Justicia

Canigo3.6.5 — Cloud Native

Projecte Nom
Arquitectura ESPECIFICACIO D’ARQUITECTURA JUSTICIA — CANIGO3.6.5 CLOUD NATIVE
Client

GENERALITAT DE CATALUNYA — DEPARTAMENT DE JUSTICIA

Nom de l'arxiu Responsable técnic

Especificacio Arquitectura JORDI ANGLI

JUS_Canigo3.6.5_CloudNative.doc

Data Fase actual

01/02/2024

Document d’Arquitectura Especificacio Arquitectura Pagina1de 116

JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

CONTROL DE DOCUMENTACIO

Identificacio

Referencia Tipus document Localitzacié document Difusié
ARQ_CAN36_CL | Arquitectura CONFIDENCIAL
OUDNATIVE

Autor(s) Revisat per

JORDI ANGLI JORDI ANGLI

AGUSTIN BURGUETE
ISRAEL BUSTAMANTE
JOAN ESTEVE

XAV FELIPE

XAVI VILAGRASA

DAVID PEREZ

Control de canvis

Versié Autor(s) Motiu Data

0.1 Arquitectura T-Systems Versi6 draft inicial 23-07-2020

1.0 Arquitectura T-Systems Versi6 definitiva 18-10-2021

11 Arquitectura T-Systems Canvi eina WSO2 per Keycloak 08-04-2022
No utilitzar eina Pentaho

1.2 Arquitectura T-Systems Eliminar referéncies a decisions antigues 12-04-2022

1.3 Arquitectura T-Systems Eliminar referéncies a decisions antigues (I1) 20-04-2022

14 Arquitectura T-Systems Revisié completa del document 01-02-2024

Document d’Arquitectura Especificacio Arquitectura Pagina2de 116

JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya
MY Departament de Justicia

Distribuci6 de copies

Organitzacio
Generalitat de Catalunya

Persones

Document d’Arquitectura

Especificacio Arquitectura
JUS_Canigo3.6.5_CloudNative.doc

Pagina3de 116

W Generalitat de Catalunya T
MY Departament de Justicia

INDEX
1 INTRODUGCCIO ..ottt 6
1.1 PROLEG ..coiiiicteceeeee ettt bttt b ettt 6
1.2 DESTINATARIS e e e e e e e e eaanaees 6
2 DIRECTRIUS ARQUITECTONIQUES.......cceeiiiieieeee e, 7
2.1 OBJECTIUS DE LARQUITECTURA ... 7
2.2 TASCADEL SISTEMA ..ot 8
2.3 CASOS D’'US DEL SISTEMA RELLEVANTS DARQUITECTURA 9
2.3.1 Casos d’Us capa de distribuCid RESTcccooiiiiiiiiiiii e 9
2.3.2 CasosdUsdelacapade NEGOCi........ccccuiieiiieieiiieiiicie e 13
2.3.3 Casos d’us de la capa de iNtEGracCiocceeuiiiiuiiiriiiieeee i 23
2.3.4 Casos d’Us de la capa de preSentaciocccceeeeeeiiiiiiiiiii e e e 25
3 CONVENCIONS | RESTRICCIONS GENERALS.......cccoeiieee. 31
3.1 CONCEPTES | COMPONENTS. . ..ottt 31
3.1.1 Arquitectura de REfEr&NCIAuuviiiiiiiiiiiiiiiie e 31
3.1.2 Serveis, Components, Frameworks, Llibreries.........ccccceeviiiiiiiiiiiii e, 31
3.1.3 Bones Practiques de la Tecnologia de Referéncia............ccccceeeeeeiieiiiiiiiiiiieneeeee, 33
3.2 ALTRES CONVENCIONS | RESTRICCIONS GENERALSccoiiviieeenn. 34
3.2.1 Normatives de programacii.............ceuuuuiiiiieeeeiiieiiiiae e e e ee et e e e e e earr e e 34
3.2.2 Gestid de 1a CONfIQUIACIOuuuiieeeiiieecce e 34
3.2.3 Proces de desenvoluPamMENtoiiiiiiiiiiniii 34
3.2.4 Eines de Desenvolupamenti Area de Treballccccooooiiiiiiiiii i, 34
4 ESPECIFICACIO D’ARQUITECTURA. ..o 35
4.1 VISTA GENERAL ..o e e ea e eaa e 35
4.2 VISTA DE CONTEXT .o e e e e e e e e e e ea e e eanaeees 37
42.1 Invocacio des de sistemes externs cap a aplicacions internes............ccooeeeeveenis 37
4.2.2 Invocacio des d’aplicacions EjCat+ cap a sistemes externs...........ccccceeeeveeeninnnnns 38
4.2.3 Interficies amb SiSteMES INLEINS..........ooovviiiiiiiie 39
4.3 ARQUITECTURA DE SEGURETAT ..ot 42
4.3.1 NiVells de SEQUIETal.......ccoiiiiiiiiieii e 42
4.3.2 Descripcio técnica de la solucié de seguretateeeeeiieeiiiiiiiiiiieiiee e 43
4.4 ARQUITECTURA PROCESSOS PLANIFICATS. ... 47
45 PROPIETATS TRANSVERSALS DEL SISTEMA ... 48
5 VISTES DE L’ARQUITECTURA DE REFERENCIAoocooveveen. 49
5.1 GENERAL o 49
ST 0 R VA TS - U (o To [(o LU UPR PP 50
5.1.2 Vista de desplegament ..o 51
5.1.3 Vista d'implementacio..............coooiii 53
5.2 CAPADE PRESENTACIO — ANGULAR ... 58
5.2.1 Nomenclatura i responsabilitatS ... 58
5.2.2 VIStA BSIALICA ..ooe e e e e 72
5.2.3 Vista diNAMICAcccoeeie e 73
5.2.4 Vista d'implementacio..........cooooieeeieooeeeeee 74
Document d’Arquitectura Especificacio Arquitectura Pagina4 de 116

JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

5.3 CAPA DE DISTRIBUCIO — SERVEIS RESTcciiiiiiie et 78
5.3.1 ServeiS RESTRUI ..o 78
5.3.2 Bones practiques de disseny de serveis REST ..., 78
5.3.3 Nomenclatura i responsabilitatsS ... 80
534 FOrMAt JSON... . et e ettt e e e e e eeaee s 81
5.3.5 Seguretat (JWT i SPring SECUILY).....ccceviiiiiiii i 83
5.3.6 Definicio dels Controllers i els métodes de 'API RESTfulcccceeiiiiiiiiiiininnnnnn. 91
5.3.7 Exposicio de 'API REST amb SWagger.....ccccoieeiiiiiiiiiiiii et 92
5.3.8 Stack de 10gging disStribUTL...........coooiiiiiiiiiiie e e 93
5.3.9 Vista estatica de la capa de distribucCio RESTcooiiiiiiiiiiiiiiiiiiieeeiiieeeeenn 94
5.3.10 Comunicaci6 entre la capa de distribucié REST i la capa de negoci................... 95
5.3.11 Vista d'implementacio............ouuuiiiiiiiiiice e 96

54 CAPADE NEGOCIH.... o aaa s 97
5.4.1 Nomenclatura i responsabilitatS..............oieiiiiiiiiiic e 97
5.4.2 VISTA ESTALICA ...ooe e oo 98
5.4.3 ViSta diNAMICA ...cccoeee e 99
5.4.4 Vista dimplementacio...........c.cooiiiiiiiiiii 99

55 CAPADINTEGRACIO ... e 101
5.5.1 Nomenclatura i responsabilitats ..o 101
5.5.2 VIStA BSIALICA ..ooe e e e e 101
553 ViSta diNAMICA ...ccoeeee i 103
5.5.4 Vista d'implementacio...........cuuuiiiiiiiiiiiie e 106

6 DECISIONS DARQUITECTURA ..ot 107

6.1 DECISIONS ARQUITECTONIQUES........cooiiietie et 107
6.1.1 Plataforma de CONteNIAOrSccooeeeieeeeeeeeeeee e 107
6.1.2 Dades compartits entre serveis vs Dades propetat d’'un unic servei 107
6.1.3 Base de dades Relacional Oracle vs Documental MongoDB...................cccee... 107
6.1.4 BBDD d€ CONSUIA ..o 108
B.1.5 API IMEINAGET ... ceitiiiei ettt e et e e e 108
6.1.6 SEIVICE MBS ... 109

6.2 AVALUACIO DE TECNOLOGIESooieioeieeeee et 110
6.2.1 Implementacio de serveis RESTIUL...........ooiiiiiiiiiiiiieeeee e 110

6.3 DECISIONS SOBRE COMPRA / DESENVOLUPAMENT / REUTILITZACIO

.. 110

6.4 PUNTS PENDENTS ... e e e eaas 111

7 OPERACIO, ROLLOUT | GESTIO APLICACIO.....ccoeeveieeiieeeenn, 112

2% S o @] 1K 1 I PP 112

7.2 OPERACIOcoiitiieeecteeee ettt 112

7.3 GESTIO DE L'APLICACIO ... 112

8 APEND X o e 113
8.1 DOCUMENTACIO DE REFERENCIAcccoviiitiieieieeieeeteeeee e 113
8.2 GLOSSARIDE TERMES ... 116

Document d’Arquitectura Especificacio Arquitectura Paginabde 116

JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya T
Departament de Justicia

1 INTRODUCCIO

1.1 PROLEG

Aquest document neix com a descripcié de la solucié arquitectonica per a projectes del Dept. Justicia amb Canigd 3.4
i front-end Angular 9 desplegats a plataforma Cloud.

Com que l'arquitectura esta viva i en continua evolucid des dels seus inicis val a dir que a data Febrer 2024 ja no hi ha
projectes Canigo 3.4 i s’ha fet upgrade a Canigo 3.6.5. Respecte a la part Angular alguns projectes continuen sent
Angular 9 i d'altres ja son Angular 13.

Degut a qué aquest document és una evolucié de I'arquitectura del projecte elusticia.cat (eJCAT), basats un
subconjunt de moduls en Canigo1 + JSP, i altres moduls en Canigo 3 + JSF o Angular, en algunes parts d’aquest
document es fara referéncia a la paraula eJCAT (referencies a documentacid, arquitectura, etc.) perd cal entendre-ho
sempre en un sentit més global, aplicant a qualsevol projecte del Dept. Justicia que hagi de fer Us d’aquesta nova
arquitectura.

1.2 DESTINATARIS

Aquest document definit per Arquitectura T-Systems té com a destinataris els Caps de Projecte, Arquitectes Técnics,
Analistes Organics, Analistes Funcionals i Programadors dels projectes i serveis de Justicia, per tal que puguin
comprendre I'arquitectura del projecte i d’aquesta manera desenvolupar les seves funcionalitats d’acord amb el qué
dicta aquesta arquitectura.

Document d’Arquitectura Especificacio Arquitectura Pagina6de 116
JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

2 DIRECTRIUS ARQUITECTONIQUES

Aquest capitol descriu els objectius més importants d’arquitectura i les seves restriccions externes.

2.1 OBJECTIUS DE L’ARQUITECTURA

Els objectius d'arquitectura vindran dictats en gran mesura pels requeriments no funcionals i restriccions generals del
projecte. Cada sistema d'informacié ha de tenir definits i documentats els seus propis Requeriments No Funcionals.

Es poden destacar alguns principis d’arquitectura (CTTI o propis) dins I'arquitectura JUS-Canigo 3.6.5 Cloud:

e Arquitectura desacoblada: per permetre als components i aplicacions mantenir-se completament autonoms i
independents.

e Arquitectura orientada a serveis: cada cop més, les aplicacions poden ser consumides externament (exposant la
seva funcionalitat) o bé han d’integrar-se amb aplicacions de tercers. Les relacions shan de dur a terme
mitjangant serveis sempre que sigui possible.

o Utilitzar solucions transversals: sempre que sigui possible, com p.ex. GICAR o el framework Canigo.

e Generar codi estandard i no propietari. S'assumeix que la utilitzacié optima d'alguns productes comercials (HCP
Hitachi, LibreOffice) genera certes dependéncies que s'intentaran minimitzar i limitar a moduls que n'explotin els
beneficis amb escreix.

Document d’Arquitectura Especificacio Arquitectura Pagina7de 116
JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

2.2 TASCA DEL SISTEMA

El projecte e-Justicia.cat compren l'estrategia per a modernitzar I’Administracié Judicial de Catalunya i defineix tres
arees fonamentals d’accid: organitzacid, infraestructura i tecnologia. Dins I'area tecnologica trobem, entre d’altres, la
necessitat d'implementar un nou sistema de gestid judicial que permeti a Catalunya posicionar-se com a lider en
I'ambit de Justicia.

e Amb innovacié tecnologica

e Revisant els processos dins I'ambit de I'’Administracié de Justicia (Jutjats, Procuradors, Serveis Comuns, etc.), i
donant cobertura a la nova Oficina Judicial.

e Obrint ’Administracio de Justicia a tots els actors implicats
e Trobant eficiencia i eficacia en la posta en marxa dels serveis judicials

A nivell tecnic, el nou sistema modifica les arquitectures anteriors per adaptar-la a la nova versié del framework Canigd
3.6.5 i permetre desplegar nous moduls i funcionalitats al Cloud. La nova arquitectura del Departament de Justicia
utilitza un front-end basat en Angular 9 o Angular 13 i que anira evolucionant a versions posteriors.

L'arquitectura del sistema ha de permetre la convivencia entre els nous projectes i sistemes més antics del
Departament (p.ex. TEMIS basat en PowerBuilder, moduls eJCAT en Canigo 1, moduls eJCAT en Canigo 3.2, etc).

Document d’Arquitectura Especificacio Arquitectura Pagina8de 116
JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya -« . -Qvetems -
Departament de Justicia Ot :

2.3 CASOS D’US DEL SISTEMA RELLEVANTS D’ARQUITECTURA

En aquest capitol s’identifiquen els casos d’Us més rellevants a nivell arquitectonic perqué:

e Representen una funcionalitat central del sistema
e Elseuambit d’influéncia engloba varies arees d’arquitectura
e Faémfasi en un punt d’arquitectura especific i delicat

Cal tenir en compte que aquests casos d’Us es poden traduir més endavant en la implementacié d'un component
d’arquitectura (T-Component) o bé simplement reflectir un escenari que cal especificar com a patré arquitectonic,
sense cap implementacid associada.

2.3.1 Casos d’'us capa de distribucié REST

uc Knowledge Area Dislribucié/

«auxiliarys
CU_ARQ003.1
Autoritzacio amb un e ——————
Provider de seguretat «includex

"de distribucié REST

«auxilisrys

CU_ARQ005.3 Accés a
Informacio d'usuari

Usuari Intranet Usuari Extranet

/ \
/ \
«primary» // \
\
CU_ARQO06 Swagger /, \\
«invokess «invokesxs
/ \
/ \
% /

Usuari Justicia &
«auxiliary»

CU_ARQ005.1 Canvi de
Context MJ-MJ

«auxiliary»

CU_ARQ005.2 Canvi de
Context MJ-EJCAT

Document d’Arquitectura Especificacio Arquitectura Pagina9de 116
JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

e CU_ARQOO1 Autenticacid per Intranet
L’autenticacid dels usuaris de la Intranet es delegara en GICAR.

Després de contactar amb la seva Oficina Técnica, i tractar possibles solucions d’integracié amb el nostre
projecte, s’ha optat per desenvolupar la solucié basada en agent de Shibboleth .

Es desenvolupara un T-Component a mida basat en aquest agent, encarregat de redirigir a GICAR per dur a
terme l'autenticacié de I'usuari. Concretament, estara configurat per validar el seu accés contra el directori
d’usuaris de la intranet, amb els mecanismes que tingui configurats (certificat, usuari-password, tarjeta
criptografica...).

En cas d’autenticar-se correctament, GICAR enviara al modul client (p.ex. Portal de la Intranet) el resultat de
I'operacid, en forma de capgaleres.

Finalment, amb el contingut d’aquestes capcaleres aquest modul preparara 'autoritzacio de I'usuari en el nostre
sistema, basada en tokens.

e CU_ARQOO02 Autenticaci6 per Internet

L’autenticacié dels usuaris d’Internet sera similar a la descrita en el punt anterior. Es configurara Shibboleth per
redirigir a un espai de GICAR que validi I'accés contra els directoris d’usuari corresponents per Internet.

Aquest resultat de I'autenticacid sera posteriorment recollit i gestionat pel modul client (p.ex. Portal de la
Extranet).

o CU_ARQO03 Autoritzacié amb JWT

Un cop autenticat correctament I'usuari en el sistema, es procedira a preparar la seva autoritzacio.

Aquesta estara basada en tokens JWT en format OpenID Connect.

La gestid de I'autoritzacio es realitzara mitjancant el servei d’ldentity Provider ofert per el producte Keycloak.
Aquest servei, basat en OAuth2, oferira la possibilitat de definir nivells d’accessos per separat, segons el tipus

d’usuari a autoritzar en el sistema: un usuari d'intranet, un usuari de I'extranet, un sistema extern, etc...

e CU_ARQO04 Accés a capa de distribucié REST

Aquest cas d’Us permet accedir a la capa de logica de negoci, independentment que I'origen de la peticié sigui la
capa de presentacié Angular o la capa d’integracié que gestiona I'entrada des de sistemes externs.

L’'accés a la capa de distribucié estara garantida després de superar els filtres de seguretat definits en el punt
anterior.

La definicié de I'API d'operacions REST de cada modul de serveis es realitzara via Spring Web MVC, amb les
anotacions @RestController corresponents.

El format de transferéncia de la informacio entre el front-end i el back-end REST sera JSON, que és un format més
lleuger que d’altres com XML,

e CU_ARQOO05 Canvi de Context (capa de backend)

Document d’Arquitectura Especificacio Arquitectura Pagina10de 116

JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

La nova arquitectura de moduls de EjCat+ ha de permetre canviar a moduls implementats amb les altres
arquitectures web de EJCAT:

e (Canigd 1.4 amb Struts i capa de presentacié JSP, seguretat implementada amb cookies
e (Canigd 3.1 amb JSF, seguretat implementada també amb cookies
e (Canigd 3.2 amb serveis REST i capa de presentacié Angular, seguretat implementada amb tokens JWT

Per cada escenari, els moduls hauran d’oferir serveis de backend a mida per garantir que es pot saltar d’'una
aplicacio origen a desti, i efectuar el retorn, sense perdre el context on ens trobavem dins I'aplicacio origen. S’ha
de considerar que el canvi de context es realitza al mateix navegador al que s’executa la aplicacié EjCat+ i sera
responsabilitat de cada aplicacid garantir el bon funcionament amb aquest navegador.

e CU_ARQOO05.1 Canvi de Context EjCat+-EjCat+

En aquest escenari, des d’un microfrontend origen d’'un modul de EjCat+ volem passar a un altre implementat
amb la mateixa tecnologia.

Tant I'origen com el desti tenen el seu backend de serveis REST protegits per Spring Security, validant els tokens
contra els mateixos endpoints OpenldConnect de I'ldentity Provider del Keycloak.

Per tant, el mateix token obtingut en origen serveix per al mddul desti, i no cal fer-ne cap transformacio. Pero si és
necessari des del modul desti proporcionar un servei REST que retorni tota la informacié necessaria al modul
origen per entrar al seu context (la URL d’entrada i els parametres necessaris de canvi de context)

La informacié relativa a I'usuari que canvia de context no s’ha d’enviar en aquests parametres, ja que viatja de
forma segura en el token JWT.

La resposta que rebra el modul origen a aquesta peticio li permetra fer, des del microfrontend, una redirecci¢ al
desti. Aquest desti, en detectar aquesta entrada, recuperara tota la informacié que s’ha facilitat en la crida, i
preparara el nou context en el nou microfrontend.

En cas que hi hagi una possibilitat de retorn a I'aplicacié origen, aquesta informacié s’haura d’emmagatzemar en
I'espai persistent local de I'usuari administrat per Angular (local storage), de manera que estigui disponible per
preparar el canvi de context en la direccid contraria: el retorn.

e CU_ARQO005.2 Canvi de Context Ejcat+EJCAT

Aquest escenari és més complex, perqué hem de canviar a contexts de moduls amb diferents implementacions
de seguretat: una cookie administrada per una shared library, o un token JWT adrecat per un modul de seguretat
amida (i que no és compatible amb el token JWT del Keycloak)

Només es contemplen canvis de context per aplicacions Intranet. Actualment, aquesta logica de negoci de canvis
de context la gestiona el modul Portal Intranet actual (implementat amb Canigé 1.4), que ofereix una entrada en el
seu controlador d'Struts per gestionar qualsevol operacié de canvi de context: validar les dades, enregistrar el
canvi, traduir tokens o cookies, i executar la redireccio.

Abans de fer la crida al Portal CAN1.4, pero, el modul origen EjCat+ ha d’oferir un servei REST per preparar els
parametres de canvi de context. A més, els ha de preparar en un format que el Portal CAN1.4 pugui entendre.

A més, aquest Portal no treballa amb tokens JWT, si no que ha de rebre un token més curt (que hem anomenat
token de canvi de context, o tokenCC) que després sigui compatible amb les diferents solucions de seguretat que

Document d’Arquitectura Especificacio Arquitectura Pagina11de 116

JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

tenim a tot EJCAT. El nou servei REST implementat al mddul origen Ejcat+ també haura de generar aquest
tokenCC.

Amb la informacid del tokenCC i dels parametres, el modul EjCat+ fara la crida al Portal. Aquest validara les
dades, enregistrara I'operacid, fara la traduccié corresponent a Cookie o a token JWT, i executara la redireccid.

Per a la situacio en que des d’'un modul EJCAT hem de fer un retorn a un modul EjCat+, hem d’oferir un endpoint
transversal que tradueixi aquest tokenCC en el token JWT de EjCat+, que esta adrecat pel Keycloak.

Per aquest motiu, el modul Portal EjCat+ oferira un servei REST per conversié de tokensCC en tokens JWT de
EjCat+.

L'aplicacio desti (EjCat+) en rebre el canvi de context executat pel Portal CAN1.4, amb tokenCC, traduira aquest
pel token JWT necessari per poder entrar ja al context del backend de serveis REST de I'aplicacio desti de EjCat+.

e CU_ARQO005.3 Accés a Informacié d’usuari

La informacio de I'usuari es recupera del d’un component de gestié d’usuaris. Al token JWT només hi haura com
ainformacio personal el DNI de la persona que fa login.

En cada aplicacid, estara disponible un Security Context creat per Spring, un cop la capa de Spring Security ha
donat per valida I'autoritzacié de I'usuari (el token JWT que ha enviat).

Com el nostre endpoint OAuth2 d’adrecament de tokens treballa amb format OpenldConnect, podrem configurar
aquesta capa de Spring Security per validar de forma offline el token, i incloure en el Security Context tots els
claims gque acompanyaven en el token que hem validat.

Per dur a terme aquesta validacié es fara servir JWKS (JSON Web Key Set). Com déiem, gracies a treballar amb
OpenldConnect, no sera necessari en cada request fer una crida addicional (en un Filter) de validacio i
desencriptat del token per extreure els claims, sino que directament Spring Security fara aquesta extraccio, sense
afegir 'overhead d’una crida extra de validacio, i ens deixara el Security Context preparat.

e CU_ARQO06 Swagger
Swagger és un framework per facilitar el disseny, desenvolupament, i documentacio d'API RESTHul.

El mecanisme és el seglent:

- Configurarem el projecte de back-end REST, per incorporar les llibreries necessaries i la configuracio base
de Swagger?.

- Decorarem els nostres REST Controllers amb unes annotacions propies de Swagger2 per cada classe i servei
exposat (amb els parametres d'entrada, codis de resposta, etc..).

- També disposarem d'annotacions pels objectes View Model dels serveis.

- Swagger?2, amb component-scan d'Spring MVC, generara automaticament tota la documentacio dels serveis,
en base a les annotacions que hem anat incorporant en el codi.

- Espodra consultar de forma online la documentacié generada.

Document d’Arquitectura Especificacio Arquitectura Pagina12de 116
JUS_Canigo3.6.5_CloudNative.doc

Generalitat de Catalunya S D .
Departament de Justicia T Systems

2.3.2 Casos d'Us de la capa de negoci

uc Knowledge Area Negoci /

wauxilisry»
CU_ARQ012.2 Accés a
sistemes externs
(EJCAT via OSB)

«auxiliary»
CU_ARQ012.1 Accés a
sistemes externs {no

«suxiliary»
U_ARQ012.2.1 Accés
a TEMIS

«auxiliarys
CU_ARQ016.1 Accés a
eines de comunicacio
asincrona

«primarys
CU_ARQ025
Transaccionalitat i

SAGA :

I
I
! I
! |
«invokess 1
1
«includes
I

|
I
I
1

«auxiliarys
CU_ARQ015.1
Transformacio de
documents

s \ S i
«invokess «invokess «includex

«auxiliarys
CU_ARQ010.2 Accés
a BBDD de consulta

«auxilisrys
CU_ARQ010.1 Accés
a BBDD propia

«auxilisrys
U_ARQ014.1 Accés a
HCP

«auxiliarys

CU_ARQ014.2 Accés a
LibreOffice

Administrador

(from
Actors)

Document d’Arquitectura Especificacio Arquitectura Pagina13de 116
JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya T
Departament de Justicia

e CU_ARQO09 Accés a capa de negoci

Les peticions arriben a la capa de distribucié cap als Controller que actuen com a punt d’entrada. Els Controller fan les
crides necessaries a la capa de negoci cap els components Service que contenen la ldgica de negoci de la
funcionalitat executada.

Un servei es:
e unarepresentacié logica d'una activitat empresarial repetible que té un resultat especificat,
és auto contingut.
pot utilitzar altres serveis per fer les seves tasques
no ha d’exposar la seva implementacio
ha de tenir definida una interficie que determina com s’ha d’utilitzar i els possibles resultats.

Com els consumidors dels serveis no s’han de coneéixer com implementa un servei la seva logica de negoci, es
distingira entre la seva interficie (Service) i la implementacié (Servicelmpl). L’accés a un servei sempre es realitzara
mitjancant la interficie i no utilitzara directament la implementacio.

Els Controllers de la capa de distribucié accediran als Service de la capa de negoci mitjancant el mecanisme
Dependency Injection de Spring, que injectara en els Controllers els Service que siguin necessaris.

Els parametres i resultats de la execucio dels serveis contindran la informacié del model ldgic de la aplicacio i podran
ser objectes del domini o tipus primitius.

Cal referir-se a les especificacions de Canigd 3.6.5, tant als serveis core com als relacionats amb negoci o integracié
per gran part dels serveis relacionats amb la capa de negoci.

Aquest cas d’Us inclou altres casos d’Us arquitectonics (veure diagrama de casos per aguesta capa logica).

e CU_ARQO10 AccésaBBDD

Cal referirse a les especificacions de Canigd 3.6.5, tant als serveis core com als relacionats amb accés a dades
persistents (Servei de Persisténcia) per gran part dels serveis relacionats amb la capa de servei de dades.

Els components de negoci interactuen amb els components d'accés a base dades per tal d'obtenir els objectes que
manipulen. Qualsevol accés a dades que es vulgui fer des de negoci haura de passar per aquesta capa.

Els serveis son els propietaris de les seves dades. Tot servei de dades esta amagat per defecte darrere un servei de
negoci. En els casos que requereixen la consulta de dades compartides d’altres serveis directament a la capa de
dades, es resoldra mitjancant les estrategies definides a I'apartat 4.2.3 Interficies amb sistemes interns (capa de
dades).

Tota la interaccid amb les dades estara implementat amb Canigd 3.6.5 que incorpora el Server de Persisténcia en
MongoDB, que esta basat en Spring Data i el patré DAO (Data Access Object). L'objecte de negoci implementa la
lbgica de les operacions funcionals amb persistencia mitjancant crides al DAO que pertoqui. Aquestes classes a més
de fer l'accés a base de dades, també fan un primer tractament de les excepcions de base de dades produides.

També existeix un Servei de Persisténcia per a BBDD Oracle que fa Us de dues aproximacions: Consultes JPAQuery
(amb implementacié interna QueryDSL) i Consultes HQL a partir de text + parametres amb APl de JPA
javax.persistence.Query. Tot aix0, també seguint el patréd DAO al igual que en el cas de MongoDB.

Document d’Arquitectura Especificacio Arquitectura Pagina 14 de 116
JUS_Canigo3.6.5_CloudNative.doc

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

m
N

Generalitat de Catalunya T
Departament de Justicia

e CU_ARQO010.1 Accés a BBDD propia

Per accedir a les dades propietaries del mddul es configura la connectivitat principal a la BBDD MongoDB amb les
dades definides per propietat i que s’indicara via YAML de configuracio, o ConfigMap d'OpenShift

Aquesta configuracié sera tractada per classes amb anotacié @Configuration incloses en la llibreria comuna jus-
canigo3.6-cloud-lib , addicionalment en la mateixa llibreria s’ha creat la classe justiciaMongoGenericDAO que permet,
mitjancant les funcionalitats basiques de lectura i escriptura, 'accés a base de dades. El programador en cap moment
s'ha de preocupar d'obrir 0 tancar connexions, sessions 0 transaccions programaticament, sind que aquesta
funcionalitat s'ha delegat declarativament en el framework.

e CU_ARQO010.2 Accés a BBDD de consulta

La BBDD de consulta sera una BBDD consultable pels serveis que ho requereixin on hi haura dades de les diferents
BBDD dels serveis. Aquestes dades poden estar normalitzades o replicades i les podrem trobar com a col-leccions
independents amb estructures iguals o similars que a les bases de dades dels serveis, 0 bé les podem trobar amb
altres estructures. Podrem trobar dades desnormalitzades de diferents col-leccions agrupades en una, o també grans
col-leccions que permetin obtenir d’una tacada conjunts de dades de diferents serveis en una sola consulta.

Aquesta BBDD permetra realitzar consultes creuant diferents negocis.

e CU_ARQO11 Invocaci6 a altres serveis sincron

Per tal de comunicar serveis entre si s'utilitzen els mecanismes propis de la plataforma Openshift (serveis) i els
aportats per I'API Manager i el service Mesh

o ElService Mesh sera emprat per optimitzar el funcionament de les aplicacions.

o L’API Manager sera el component arquitectonic encarregat d’exposar les API's de les serveis del
sistema cap a I'exterior (internet) amagant detalls de la implementacid.

e CU_ARQO12 Interacci6 cap a sistemes externs (capa negoci)

Aquest cas d’'Us quedara detallat en els dos casos d'Us fill que el componen. Hi haura dos possibilitats a I'nora de
comunicar-se amb sistemes externs:

o Sortida directa
o Sortida via serveis que facin feina de fluxos d’integracié
e CU_ARQ012.1 Accés a sistemes externs (no EJCAT)

Si un servei d’EJCAT+ ha de comunicar-se amb un servei extern podra fer-ho de manera directa si el servei extern té un
interficie REST. Les crides REST contra serveis externs haurien de ser dotades de tecniques de resiliéncia com
timeouts per tal d’assegurar que un possible problema a un sistema extern i no controlat per nosaltres no afecta a
I'estabilitat del nostre sistema.

En sistemes més antics que no puguin oferir serveis REST i s'hagin d'accedir amb altre tipus de protocol es podra fer
Us de Sl (Spring Integration). Mitjancant S| es podran crear peces (serveis d'integracid) encarregades de rebre
peticions REST dels serveis de EJCAT+ i transformar aquestes peticions cap als protocols necessaris segons la

Document d’Arquitectura Especificacio Arquitectura Pagina15de 116
JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya T
Departament de Justicia

plataforma o aplicacié que s'hagi de consumir. A més de canvis de protocol amb Sl es podran oferir serveis ampliats
com WS-Security, WS-Attachments, MTOM...

e CU_ARQO12.2 Accés a sistemes externs (EJCAT via OSB)

Aquest cas d’'Us és un cas concret del cas d’is 12.1 en el que es deixa constancia que per accedir a EJCAT caldra fer-
ho via OSB ja que és la seva porta d’entrada i sortida estandard per comunicar-se amb sistemes externs.

e CU_ARQO012.2.1 Accés a TEMIS

Una gran part de les aplicacions EJCAT encara han de conviure amb TEMIS (antic sistema d’informacié de Justicia
codificat en PowerBuilder).

La interaccié entre EJCAT i TEMIS es fa actualment de la seglient manera:
e Des d'una aplicacié JEE cap a TEMIS, es configurara un datasource al servidor d’aplicacions JEE que
accedira a través de procediments PL/SQL a funcionalitat de TEMIS
e Des de TEMIS cap a una aplicacié JEE, mitjancant la invocacié de web services (directes o via OSB), o crides
HTTPS a punts concrets de 'aplicacio.

Les interaccions entre EjCat+ i TEMIS es fara de la seglient manera:

e Des d'una aplicacié desplegada en arquitectura Cloud no s’hauria d’accedir a funcionalitats de TEMIS.
Perd a cassos excepcionals amb una volumetria moderada es pot exposar un servei REST a 'OSB per
tal que pugui ser cridat des de I'aplicacié Cloud. El servei de I'OSB s’haura d’encarregar de realitzar la
transformacio de les dades que sigui adient i executar les funcions emmagatzemades a la base de
dades de TEMIS per tal que realitzin la tasca o cerca d’'informacié adient.

e En cas que l'accés de EJCAT+ a TEMIS fos per a actualitzacié de dades caldria accedir de manera
directa aprofitant la possibilitat de connectar a BBDD Oracle i no s’hauria de passar per OSB per a tal
efecte.

e Des de TEMIS cap a una aplicacié desplegada en arquitectura Cloud, a cassos amb una volumetria
moderada, TEMIS invoca a un servei de 'OSB que s'encarrega de realitzar una invocacié d'in servei
REST exposat per la aplicacié Cloud.

A nivell de dades si que podria existir intercanvi d'informacié entre les BBDD de TEMIS i les de EjCat+. Aquest
intercanvi d’informacio (sigui de TEMIS a EjCat+ o de EjCat+ a TEMIS)

Per a més informacid sobre cada accés es pot consultar el DTE corresponent de cada una de les aplicacions.

e CU_ARQO13 Cache

Dins el marc de les aplicacions de Justicia , existeix la necessitat de cachejar les respostes de les crides als serveis
REST transversals.

Per aquesta necessitat, en la llibreria jus-canigo3.6-cloud-lib s’ha creat un T-Component justiciaCacheExtDAO que
contindra les funcions basiques en quant a utilitzacio de la Redis Cache. L'Us d’aquest component s’encarregara de
cachejar les respostes diariament per evitar un excés de crides als serveis RESTS

Aquesta llibreria per cachejar les respostes es connectara a una instancia compartida de Redis Cache Server que es
trobara instal-lat en el Openshift, I'Us de la cache compartida evitara que les dades puguin ser diferents en cada
memoria cau, com podria ocorrer amb l'emmagatzematge en cache privat. L'emmagatzematge en memoria cau

Document d’Arquitectura Especificacio Arquitectura Pagina16de 116
JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya -« . -Qvetems -
Departament de Justicia Ot :

compartit garanteix que diferents instancies d'una aplicacié veuen la mateixa vista de dades en la caché. Per a aix0, es
publicara com a part d'un servei independent:

11
| .
—

%,

N

Addicionalment, aquesta llibreria permet que qualsevol modul pugui importar o crear cacheManagers per si el modul
te una necessitat especifica de cachejar serveis propis.

Per defecte la llibreria tindra dos cacheManagers configurades i amb la possibilitat de ser utilitzades per qualsevol
modul que aixi ho requereixi;

cacheManagerHour. Cache Manager configurada a 1 hora. Al utilitzar aquesta cacheManager, totes les
entrades expiraran al cap de una hora.

cacheManagerDay. Cache Manager configurada a 1 dia . Al utilitzar aquesta cacheManager, totes les
entrades expiraran al cap de una hora.

e CU_ARQO14 Editor de documents

L'editor de documents és un A-Component (component funcional) de tipus JavaWebStart que s’executa en client i que
és I'encarregat de editar cert tipus de documents que es generen a Justicia, en qué I'usuari resol tot una série de
marques per tal de donar-li contingut al document.

Aquests documents és connectaran amb LibreOffice (veure el CU_ARQO14.2) per tal de transformar-los al format
definitiu que s’emmagatzemara dins de HCP (CU_ARQO014.1)

e CU_ARQO014.1 Accés aHCP

Als sistemes d’informacié de Justicia existeixen una gran quantitat de moduls que necessiten interactuar amb un
repositori documental. Historicament el repositori documental ha estat un servidor Documentum que en la nova
arquitectura Cloud sera substituit per un HCP de Hitachi.

Document d’Arquitectura Especificacio Arquitectura Pagina 17 de 116
JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya .- F--Svstems -
MY Departament de Justicia A

Es delegara l'accés centralitzat a HCP a un altre modul funcional (A-Component desenvolupat en Canigo3.4 i
desplegat al Cloud) anomenat GDO+ (Gestor Documental). Aquest modul utilitzara I’API REST de HCP per tal
d’interactuar amb HCP.

Les noves aplicacions desenvolupades en arquitectura Canigo 3.6.5 Cloud Native accediran directament al GDO+ per
descarregar i carregar documents. Les aplicacions existents que ja interactuen amb I'aplicacié original GDO ho
seguiran fent aixi i sera GDO qui interactuara amb GDO+ per tal que interactui amb HCP.

- GDO i GDO+ HCP
> »
Méduls
actuals " -
-+
. . .
> i >
Nou i
Madul |
Wrapper
»
. . GDO+
(T T1 |~
il
A
Aplicacié
> >
extranet - =4
IBM apicannex
(AP1 Manager Corporat)

Es pot consultar el document DTE de GDO i GDO+ per ampliar el detall d’aquest cas d’Us.

e CU_ARQO014.2 Accés a LibreOffice

Per tal que el A-Component (mddul funcional) de I'editor de documents pugui assolir tots els requeriments
funcionals (es pot consultar el DFU del modul corresponent per ampliar els detalls sobre els requeriments
funcionals) es necessari que es connecti a una aplicacid de tercers per a realitzar la generacié de documents, en
aquest cas un LibreOffice.

A diferencia del cas d’Us de transformacié de documents (CU_ARQO15.1) que també necessita una aplicacié de
tercers per generar documents, en aquest cas I'accés es realitza de manera local a les maquines dels usuaris, que

ja porten pre-instal-lades un LibreOffice per permetre I'is de I'editor.

Per veure com es realitza aquest accés des de I'editor, es pot consultar el DTE del modul corresponent on es
trobaran tots els detalls sobre la interaccio entre I'editor i el LibreOffice.

e CU_ARQO15 Signatura Electronica

Certs moduls de Justicia necessiten serveis de signatura electronica. Principalment:

o Signar amb certificat d’'usuari: s'utilitza un applet desenvolupat per CatCert a tal efecte

o Signar amb un certificat d’aplicacid: des de la capa de negoci d'un modul, s’invoca a un A-
Component de tipus EAR anomenat SIG que actua de facana per a la interaccié amb la plataforma
PSIS de CatCert

Document d’Arquitectura Especificacio Arquitectura Pagina18de 116

JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

o Validar un certificat d'usuari: com al cas anterior, s'utilitza la facana de SIG per a la interaccié amb la
plataforma PSIS de CatCert

Apart, existeix un altre A-Component de tipus EAR anomenat SSE (Safata Signatura Electronica). Aquest modul
interactua amb la plataforma PSA de CatCert, i proporciona funcionalitats de workflow de signatures
(aprovacio/denegacio, multi-signatures, etc.).

Es pot ampliar la informacié sobre la utilitzacié de Signatura al document DTE del modul SIG. Es pot ampliar la
informacioé sobre el mddul Safata Signatura Electronica al DTE del modul SSE.

e CU_ARQO015.1 Transformacioé de documents

La gran majoria de documents que es generen a Justicia sén en format PDF, ja siguin documents generats per les
aplicacions o documents adjuntats per 'usuari. La transformacié d’aquests documents del format original (RTF,
Word, Excel, ...) al format demanat PDF es realitza mitjangant un sistema extern de transformacié de documents,
al qual es fa arribar el document original i aquest el retorna transformat a PDF.

Per temes d’optimitzacid de consum de memoria i temps de transformacid, es fa una separacio entre documents
originals en format Windows (Word, Excel) i documents que poden ser transformats en UNIX (RTF, ODT). Aquesta
separacio es totalment transparent per 'usuari, ja que la realitza I'OSB depenent del format original del document
a transformar.

Es delegara I'accés centralitzat per la transformacié de documents a un modul funcional (A-Component de tipus
EAR) anomenat STD (Servei de Transformacié de Documents). Aquest modul s'instal-lara dins el Oracle Service
Bus (OSB) i s'invocara via webservice.

Aquest modul STD proporciona les seglents funcionalitats:

o Normalitzacié de format a PDF a partir de documents ofimatics

o Transformacié de documents a partir d’'un document pre-configurat mitjancant un sistema de
plantilles

o Creaci6 de codi segur de verificacié del document

o Signatura digital del document normalitzat i transformat (delegant certes operacions de signatura en
el modul SIG)

e CU_ARQO16 Procés Asincron

S’ha de donar resposta a les possibles necessitats de comunicacions asincrones entre serveis de I'arquitectura i a
aquest apartat s’engloben els casos d’Us relacionats amb aquesta necessitat.

e CU_ARQO16.1 Accés a eines de comunicacié asincrona

Com eina per realitzar comunicacions asincrones entre els serveis que formen part de la arquitectura es va
seleccionar Kafka.

A la llibreria comuna jus-canigo3.6-cloud-lib existeix un T-Component que permet configurar i realitzar aquesta
integracié. S’ha realitzat una guia [CU_ARQO16.1 Accés a eines de comunicacio asincrona)] per explicar la
configuracié necessaria per realitzar comunicacio asincrona entre els serveis de la arquitectura cloud mitjangant
I'eina Kafka.

e CU_ARQO17 Reporting

Document d’Arquitectura Especificacio Arquitectura Pagina19de 116

JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

Dins el marc de les aplicacions de Justicia, existeixen diversos moduls que generen documents, a partir de les
dades existents a base de dades, per distribuir als usuaris.

Aquests documents generats, en format Excel o PDF es realitzen populant de dades les plantilles corresponents.
S’ha establert un mecanisme per treballar amb JasperReport per definir aquestes plantilles i com s’utilitzen des de
les aplicacions .S’ha realitzat una guia [CU_ARQO17 Reporting] de JasperReport per obtenir més informacié de la
interaccio entre les aplicacions i els reports.

e CU_ARQO18 Monitoritzacié

Les aplicacions poden exposar indicadors del seu comportament i estat (métriques). Aquestes meétriques poden
estar recollides per eines externes per tal d’alliberar a les aplicacions del seu tractament.

S’ha realitzat una guia [CU_ARQO18 Monitoritzacié] on es descriu els passos per integrar la generacié de
meétriques de negoci a aplicacions i la seva posterior recol-leccid.

e CU_ARQO19 Enviament de correus

Per gestionar I'enviament de correu en la llibreria jus-canigo3.6cloudib s’ha creat un T-Component
JusticiaSimpleMailBuilder que les aplicacions faran servir per enviar correus.

La configuracié del component (host, port, .. .) es realitza amb ConfigMap d'OpenShift.
e CU_ARQ020 Logging

Per gestionar les traces que generen els nostres serveis utilitzarem els seglients productes especialitzats en
entorns cloud i basats en OpenTracing: I'stack EFK i el producte Jaeger.

e CU_ARQO21 Auditoria

Dins el marc de les aplicacions de Justicia , existeix la necessitat d” auditar les operacions que realitzen els usuaris
sobre la base de dades.

En la llibreria jus-canigo3.6-cloud-ib s’ha creat un T-Component AuditCommandListener que audita totes les
operacions a la base de dades, ja siguin de consulta com d’actualitzacié i publica un missatge de tipus asincron
amb el detall de I'operacid. En el missatge consta, entre altre informacio:

Nom de I'aplicacio

Base de dades sobre la que s’ha realitzat I'operacié
Colleccid

Usuari connectat a I'aplicacio que ha realitzat I'operacio.
Datay hora

Sentencia executada en format JSON,

Resultat en forma JSON.

Temps consumit per la sentencia.

O 0O O O O O O O

S’ha creat el modul justicia-audit-service que processara els missatges publicats per les aplicacions i els
enregistra a base de dades.

Document d’Arquitectura Especificacio Arquitectura Pagina20de 116

JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

. —— Service A kafka— subscribe —» Audit service
a A

| publish

JusticiaMongoTemplateBuilder

(AuditCommandListener) audit
.mon oDB
g

compass audit
BBDD BBDD
Service A Audit

e CU_ARQO22 Gestio d'excepcions
Tal com s’ha definit en altres arquitectures web similars de Justicia, definirem dos blocs diferenciats d’excepcions:
e Excepcions de negoci (checked): consistents en errors de validacié o dades.

e Excepcions de runtime (unchecked): provocades per errors inesperats aliens al comportament funcional
del servei: problema de comunicacions, base de dades, operacions de disc, etc...

Es definiran dos T-Components principals a mida per cada tipus d’excepcid, i també classes a mida per gestionar
de forma comuna la transformacié de les excepcions en respostes a la crida REST efectuada.

e JusticiaBusinessException
e JusticiaSystemException
e JusticiaResponseEntityExceptionHandler

e CU_ARQO023 Actualitzar configuracions en calent

Segons la necessitat disposarem de dues eines diferents d'aconseguir fer canvis "en calent" sense haver de fer un

canvi al codi.

Per tal d'aconseguir-ho podrem fer-ho:

e Via configmaps: Els serveis desplegats al cloud fan Us de descriptors de desplegaments, secrets, routes,
services, configmaps ... Farem Us dels configmaps per aconseguir refrescar certes propietats que ens
interessi

e \Via cache: Permetra agilitzar algunes parts del codi i a banda podrem tenir a bbdd algunes propietats que
son susceptibles de ser canviades. Amb aquest sistema podem estalviar desplegaments i guanyar flexibilitat

e CU_ARQ024 Notificacions PWA (backend)

El component de notificacions Web Push és un cas d’Us principalment de frontend. Tanmateix, des del backend
cal oferir una serie de funcionalitats en un T-Component comu de tipus servei, per gestionar-les dins el projecte
EjCat+. Aquest servei oferira:

e Manteniment de les peticions de subscripcié Web Push, generades pel navegador de I'usuari, en cas
que aquest accepti rebre notificacions del nostre projecte.

Document d’Arquitectura Especificacio Arquitectura Pagina 21 de 116
JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

Aquestes subscripcions es desaran en una col-lecci6 MongoDB publicada a tal efecte, i posteriorment
s'utilitzaran per propagar els avisos segons el grau d’especialitzacio que es destigi: per usuari individual
o per agrupacio funcional d’'usuaris

e Generaci6 de les claus publiques i privades per autenticar les notificacions als diferents servidors de
Web Push (Mozilla, Google Chrome, Microsoft Edge,...)

e Gestiod de les peticions de baixa de subscripcio. L'usuari, en qualsevol moment, pot indicar al navegador
que vol deixar de rebre avisos de la plataforma, i en aquest cas, cal gestionar la corresponent baixa al
sistema Web Push del navegador.

e CU_ARQO25 Transaccionalitat i SAGA

A contextos tradicionals, com poden ser les aplicacions JEE, transaccionalitat es pot entendre com equivalent a
l'acronim ACID utilitzant el protocol conegut com 2PC (two-phase commit) per realitzar transaccions ACID
distribuides. A arquitectures encara més distribuides, 2PC no és una opcidé recomanable per motius de
rendiment, i inclts no hi ha un suport consolidat a 2PC en protocols lleugers d'invocacié REST. Es una restriccié
coneguda a aquestes arquitectures que descarten I'is de transaccions distribuides amb propietats ACID.

El fet de no utilitzar transaccions distribuides de tipus ACID no treu que la necessitat de transaccionalitat
distribuida pugui existir. L'opcid per aquesta necessitat a les arquitectures distribuides passa per I'Us de
transaccions descrites per la nocié de consistencia eventual. En relacié a la consisténcia eventual, comunament
es parla de BASE: Basically Available, Soft estate, Eventually consistent.

Una aproximacié per descriure la consisténcia eventual és considerar que el sistema no evoluciona entre dos
estats consistents de dades de manera atomica sind que des de que s'inicia una transaccio, els sistemes poden
passar per altres estats visibles, potencialment no consistents fins que s'arriba a un nou estat final, que mostra
correctament la transaccid completament aplicada. De la mateixa forma, la cancel-lacié dels canvis (a ACID:
rollback), no és atomica sind també subjecte a consisténcia eventual, en el que no necessariament ens porta a un
estat idéntic a l'estat inicial abans de comencar la transaccié. Es per aixd que no es parla del terme rollback i es
parla de compensacio.

Una SAGA és una seqléncia d'operacions que realitzen una unitat de treball especifica i que generalment es
troben intercalades entre si. Cada operacié que forma part d'una SAGA es pot "revertir" mitjangant una accié de
compensacio. La SAGA vol garantir que totes les operacions es completin correctament o s'executin les accions
de compensacio que siguin adients (per a totes les operacions executades) per revertir qualsevol treball realitzat
anteriorment.

S’ha realitzat una guia [CU_ARQO25_Transaccionalitat_i_SAGA] on es descriu el patrdo SAGA.

Transaccio local Transaccio local Transaccio local Transaccio local
crida crida crida
:.‘ Servei 1 Servei 2 Servei N-1 Servei N
() P E— «— <« «—
Error » Error s 3 Error s 4
Local transaction Local transaction Local transaction Local transaction
Compensacio Compensacio Compensacio rollback

Esquema tedric SAGA amb compensacions

Document d’Arquitectura Especificacio Arquitectura Pagina 22 de 116

JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

2.3.3 Casos d’us de la capa de integracié

uc Knowledge Area Integracié/

«primary»
CU_ARQ027 Procés
Batch

Planificador
Sistema Extern
{from
Actors) \ {from
Actors)

«invokess
.

«primary»s «primary»

CU_ARQ029 Swagger CU_ARQO04 Accés a capa de CU_ARQ028 ARQ Integracio

Capa Dades - EJCAT i MJ

API Manager distribucio REST

(from Knowledge Ares Distribucid)

e CU_ARQO26 Accés a serveis negoci dins del cloud de justicia des de sistemes externs

En arquitectures de serveis és habitual tenir un APl Manager que faci funcions de facana dels nostres serveis cap a
I'exterior.

En l'arquitectura Canigo 3.6 + Angular algunes de les comunicacions d’entrada faran us de I'’Api Manager Corporatiu
IBM Api Connect. Aquest Api Manager sera la porta d'entrada de sistemes externs a Justicia que vulguin cridar serveis
interns, quan aquests sistemes que criden estiguin fora del que podria ser considerat una “xarxa o connexid segura”

Les funcions principals de I'’Api Manager seran:

1. Proveint el nostre sistema d'una capa externa de seguretat

2. Realitzant funcions d'enrutament cap a sistemes interns
Quines comunicacions no faran Us de Api Manager?

1. Comunicacions entre serveis desplegats a Openshift

2. Comunicacions cap a serveis interns a Openshift que vinguin del que podria ser considerat elements interns
com podrien ser altres aplicacions del Departament de Justicia allotjades a la Intranet

3. Comunicacions cap a serveis exteriors (Api Manager només sera porta d’entrada, no de sortida)

e CU_ARQO27 Procés Batch

Una necessitat habitual de les aplicacions és I'execucié d’un procés o tasca de manera planificada, ja sigui a uns
moments determinats o d’una manera periodica (cada cert periode de temps).

Es va escollir ShedLock com mecanisme predeterminat per la planificacié de tasques, sense descartar altres
possibilitats com Control-M com mecanisme extern de planificacié de tasques.

S’ha creat una guia [CU_ARQO027 Processos Batch] per descriure com les aplicacions han de procedir respecte als
processos planificats.

Document d’Arquitectura Especificacio Arquitectura Pagina23de 116
JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya T
Departament de Justicia

e CU_ARQO028 ARQ Integracié Capa Dades

Les dades sén propietaries del servei que sigui el responsable (si s’ha realitzat disseny dirigit al domini, només un
servei sera el responsable d’'un determinat domini) i si un tercer necessita aquelles dades podra consultar-les via
invocacié de serveis de negoci. Malgrat aix0 existiran escenaris on no sera recomanable obtenir aquestes dades via
invocacié de serveis com per exemple;

e Volum molt elevat de dades a retornar per part del servei
e Elevat nimero de peticions al servei de consulta
e Necessitats derivades de la desnormalitzacio de base de dades

e Manteniment de la coheréncia de dades entre sistemes diferents.

A aquests escenaris, la integracid a capa de dades consisteix en realitzar una obtencio de dades, directament des d'un
repositori de dades (sense utilitzar la capa de negoci per accedir a les dades) per tal de poder comunicar aquestes
dades a un altre sistema que els rep i processa - o adapta - per actualitzar el seu propi repositori de dades (sense
utilitzar la capa de negoci per actualitzar les dades).

En alguns escenaris d’integracid de dades pot ser necessaria una logica de negoci per donar context a les dades
obtingudes, aixi com una logica de negoci per tal de poder adaptar la informacié a les necessitats i caracteristiques
del sistema que rep les dades i per tant poden existir etapes de transformacié o ampliacio de la informacio origen per
ser enviada amb context cap a serveis desti o interessats.

S’ha realitzat una guia [CU_ARQO028 ARQ Integracié Capa Dades] per descriure els escenaris d'integracié de dades i
les seves caracteristiques.

e CU_ARQO029 Swagger APl Manager

En aquest punt es descriu com publicar els serveis en un APl Manager a partir de la informacié de Swagger.

Per aquest objectiu, es requereix tenir préviament els serveis REST de Backend publicats a traves de Swagger, amb
aquests serveis desplegats, durant la creacio i publicacié de la APl a ’API Manager se li indicara la URL del Swagger
del servei de backend.

Document d’Arquitectura Especificacio Arquitectura Pagina 24 de 116
JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya
MY Departament de Justicia

2.3.4 Casos d’us de la capa de presentacio

Els casos d'Us d’aquesta capa son els segiients:

uc Knowledge Area Presentacié /

«auxiliary»
CU_ARQ030.4 Arbre

«auxiliary»

CU_ARQ030.5 Finestra
modal

«auxiliary»
CU_ARQ030.3 Menu

grafica

«primary»
CU_ARQO37 Aplicacions
Web Progressives (PWA)

«primary»
CU_ARQO36
Microfrontends

«primary»
CU_ARQ035 Monitoritzacié
capa client

«primary»
CU_ARQO34 Canvide
context

«primary»
CU_ARQ033 Propietats
transversals

/

Usuari Justicia
(from

Actors)

\

«primary»
CU_ARQO31 Java Web
Start

Administrador

(from
Actors)

«auxiliary» v\ \\ ///7
CU_ARQ030.2 Liistats \ N \ ,
paginables N \ /
X~ D «include» ! > ;7
~ «include» «include» -
~< 2 \ I _
T~ ~ N\ \ / -7
~ \ / Ping
«include» ~ - N N \ / _ ~«include»
~ ’ -
~o -
ilii ~
«auxiliary» o .
CU_ARQO30.1Camps J&——— ————— —— — _ _ _ _ _ _ AT
basics «include» EUSSROQUSOINENES «include»

«auxiliary»

CU_ARQ030.6 Wizard

«invokes»

«invokes»

CU_ARQ032 Comunicacié

«auxiliary»
CU_ARQ030.7 File
upload

«primary»

capa REST

CU_ARQO30 Interficie grafica

La interficie grafica de I'aplicacié client Angular estara basada en els estandards Web HTML versi¢ 5, CSS versi6 3 i

llibreries JavaScript.

El disseny de la interficie d'usuari sera responsive basat en el framework CSS Bootstrap, de manera que l'experiéncia
d’'usuari sigui la mateixa des de la web, tauleta o mobil. L'arquitectura, les metodologies i els components de
desenvolupament a utilitzar es defineixen en les guies de desenvolupament de frontend basades en el framework
Angular. Altres necessitats s'estudiaran de cas en cas previament a l'inici del desenvolupament.

@ Més informacic sobre el framework Boostrap: https://getbootstrap.com/docs

Document d’Arquitectura Especificacio Arquitectura

JUS_Canigo3.6.5_CloudNative.doc

Pagina25de 116

https://getbootstrap.com/docs

m
N

Generalitat de Catalunya T
Departament de Justicia

e CU_ARQO030.1 Camps basics

Com a camps basics, tant d’entrada de dades com per a mostrar informacié a 'usuari, es faran servir els controls
inclosos a la llibreria especifica per Angular PrimeNG. Els camps basics inclouen camps de text, quadres de llista,
quadres combinats caselles de seleccid, botons, botons d’opcid i calendaris.

o CU_ARQ030.2 Llistats paginables

Per als llistats paginables es faran servir conjuntament els controls DataTable i Paginator inclosos a la llibreria
PrimeNG.

e CU_ARQ030.3 Mend

Per als menus de I'aplicacid paginables es faran servir els controls especifics inclosos a la llibreria PrimeNG. Els
controls de menu inclouen menus contextuals, menu vertical i menus multinivell.

o CU_ARQ030.4 Arbre

Per als controls de tipus arbre es fara servir el control especific Tree inclos a la llibreria PrimeNG.

e (CU_ARQO030.5 Finestra modal

Per a les finestres de tipus modal de les aplicacions Angular es fara servir el control especific Dialog inclos a la llibreria
PrimeNG.

e CU_ARQ030.6 Wizard
Pels components de tipus Wizard de les aplicacions Angular es fara servir el control especific Accordion inclos a la
llibreria PrimeNG.

Aquest component mostra panells que poden ser col-lapsats. Es mostra un panell inicial on introduiran les dades
basiques i només es mostraran els segiients panells (passos) quan s’hagi emplenat la informacié necessaria.

Una vegada s'han guardat les dades del primer panel (pas 1) la resta de panells es van mostrant segons les dades
necessaries complimentades als panells anteriors (aixd0 dependra de la logica de negoci de cada aplicacid). Una
vegada carregats els panells, sempre sera possible accedir al qualsevol panell de manera immediata.

e CU_ARQO030.7 File upload

Per a penjar fitxers al servidors des de la capa client Angular (file upload) es fara servir el control especific FileUpload
inclos a la llibreria PrimeNG.

Document d’Arquitectura Especificacio Arquitectura Pagina26de 116
JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya T
Departament de Justicia

e (CU_ARQO31 Java Web Start

Java Web Start és un mecanisme de Java que permet executar aplicacions en local publicades en enllagos web i amb
I'habilitat d’actualitzar-se automaticament. Es va dissenyar com una tecnologia alternativa als applets pels casos on la
funcionalitat esta completament dins I'aplicacio.

Quan es descarrega, queda en la caché de Java, a I'apartat d’aplicacions i es pot tornar a executar. Hi ha la opcié de
crear accessos directes a aguesta aplicacio.

Cal tenir en compte que les aplicacions JNLP no només s'inicien des d’'una URL, sind que també es mantenen
automaticament actualitzades perqué cada cop que s’executa es pot comprovar si el JNLP o els JAR han canviat i
actualitzar-se. A més, com és caché java no es tenen problemes de permisos d’instal-lacié ni res.

També és possible fer pre-instal-lacions executant la segilient comanda: javaws -import -codebase file://c:/tmp
c:\tmp\prova.jnlp

Les aplicacions Java Web Start s’executen sense necessitar cap navegador i per tant no hi interactuen. Aixo fa més
dificil I'is de Java Web Start com a substitut dels applets pero hi ha els seglients escenaris de comunicacié depenent
del grau d'integracid que es desitgi.

@ Sitan sols necessitem enviar dades en una uUnica crida cap al servidor, aquesta es pot realitzar directament per
I'aplicacio JWS. Un parametre del jnlp podria indicar una URL on cridar quan finalitza I'accié i aquesta realitzaria
I'accié o accions necessaries.

@ Sies vol interaccié amb la pagina del navegador, es pot implementar una crida AJAX des de javascript cap a
I'aplicacié JWS. En obrir la pagina, aquesta intentaria (amb reintents i un timeout petit) connectar-se en un port
TCP predefinit, i un cop connectat, esperaria resposta. En I'aplicacié JWS, a questa connexié s’obriria en un fil
parallel on esperaria en un bucle que finalitzés 'accié. Quan aquesta ha finalitzat, el fil enviaria la resposta, que
la rebria el navegador.

Document d’Arquitectura Especificacio Arquitectura Pagina 27 de 116
JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya T
Departament de Justicia

e CU_ARQO032 Comunicacié capa REST

Tota la comunicacié de la capa de presentacié amb la capa backend REST del servidor estara centralitzada en un
Unic servei de comunicacions de 'aplicacio. Per la seva banda, aquest servei fara servir el modul inclos a les llibreries
basiques d’Angular especific per a comunicacions HTTP @angular/common/http. Les comunicacions faran servir el
protocol HTTP/S i les dades intercanviades seran en format JSON.

Les comunicacions amb la capa REST del servidor seran asincrones i seguiran el patré dels Observables aplicat a
fluxos de dades utilitzat a Angular (implementat a la llibreria de ‘Reactive Extensions’ o ‘RxJS’). D’aquesta forma, es
tractara tot tipus d'informacid intercanviada amb la capa REST del servidor com un flux (stream) ‘observable’ d'entrada
i de sortida, al que se li poden agregar operacions que processen les dades.

En les comunicacions amb el servidor en que requereixi autentificacio, el servei de I'aplicacid Angular incloura en el
Header de la peticid HTTP corresponent (Request) el token JWT obtingut durant el procés de login. Veure apartat
5.3.5.3 Intercanvi de JWT entre client i servidor per informacié detallada.

o CU_ARQO33 Propietats transversals

Veure apartat 4.5. Propietats transversals del sistema per a més informacid.

e (CU_ARQO034 Canvi de context

En ocasions la capa de presentacié d’un modul necessita accedir a la capa de presentacié d’un altre. Certa informacié
de context ha de ser traspassada entre aplicacions de manera transparent per 'usuari, i a més es desitja cert control
d’accés i auditoria.

En el cas de les aplicacions Angular dels sistemes de EjCat+ s'implementaran les funcionalitats necessaries per a
cadascun dels escenaris de canvi de context entre aplicacions:

1. Aplicacid Angular EjCat+ (Microfrontend) = Aplicacié Angular EjCat+ (Microfrontend).
2. Aplicacié Angular EjCat+ (Microfrontend) = Aplicacio eJCAT.
3. Aplicacio eJCAT -> Aplicacié Angular EjCat+ (Microfrontend).

Document d’Arquitectura Especificacio Arquitectura Pagina28de 116
JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya T
Departament de Justicia

o CU_ARQO35 Monitoritzacié capa client

La monitoritzacié de I'experiencia real d’'usuari al navegador (Real User Monitoring) en una aplicacié Angular (Single
Page Application) ens permet el segiient:

= Detectari solucionar problemes d’aplicacions Angular dins del context de la carrega inicial de la pagina.

= Ajudar ales decisions de negoci mitjangant I'analisi de dades de les aplicacions Angular a través d'analisis de
les mesures obtingudes.

= Permet els desenvolupadors crear aplicacions amb un rendiment optim.

Angular proporciona una série d’eines com Router events, Component Decorators i LifeCycle Hooks, Property
Decorators i HTTP Interceptors que, conjuntament amb la utilitzacié de 'API Web Performance API ens permeten
d’obtenir tota la informacid sobre el rendiment de I'aplicacié respecte a temps de carrega i comunicacions.

Performance API proporciona accés a informacid relacionada amb el rendiment per a la pagina actual en el
navegador. Es part de la High Resolution Time API, perd esta millorada per la Performance Timeline API, la Navigation
Timing API, la User Timing APl i la Resource Timing API.

Perfume.js ens permet fer servir la Performance API d’una forma molt senzilla. Perfume.js aprofita totes aquestes API
de rendiment que ens permeten recopilar métriques per a desenvolupar una comprensié més profunda de com els
usuaris perceben el rendiment web de I'aplicacio.

Per tal de fer servir les funcionalitats que ofereix Perfume.js i les Performance API en el context d’una aplicacié
Angular s’ha creat un modul Monitoring dins del framework ra-ng que inclou una série de serveis, decorators i
interceptors que ens faciliten la recollida de les dades de monitoritzacié en una aplicacié Angular.

Document d’Arquitectura Especificacio Arquitectura Pagina29de 116
JUS_Canigo3.6.5_CloudNative.doc

m
N

Generalitat de Catalunya T
Departament de Justicia

o CU_ARQO036 Microfrontends

El terme Microfrontend es refereix a una aproximacié d’arquitectura de desenvolupament d’aplicacions web com una
composicié de aplicacions frontends “petites” respecte a la aplicacié sencera que es necessita construir. Les
funcionalitats es poden dividir per dominis que sén gestionats per microfrontends especifics, auto continguts i que
poden ser desenvolupats i desplegats el més independentment possible.

La solucié de microfrontends en les aplicacions Angular estara basada en una implementacié de Web components
(Custom Elements) i en concret en la seva basant Angular, Angular Elements.

No tots els moduls de I'aplicacié han de construir-se en forma de Microfrontend. Aquesta solucioé s’aplicara en aquells
casos en que el desenvolupament d’un domini de negoci requereixi d’un cicle de vida diferent al de I'aplicacid
principal o bé la tecnologia o framework utilitzada sigui diferent de la de I'aplicacié principal.

o CU_ARQO37 Aplicacions Web Progressives (PWA)

Es pot pensar en una PWA com un lloc web perd que actua i es comporta com una aplicacio. La disponibilitat dels
anomenats service workers i en les APl de Cache i Push donen la possibilitat als desenvolupadors web de permetre
als usuaris instal-lar aplicacions web en el propi dispositiu, ja sigui un ordinador, tableta o mobil, rebre notificacions
push i fins i tot treballar sense connexio.

En el cas de les aplicacions Angular s’afegira la dependéncia @angular/pwa als projectes. Aquest procés afegeix les
llibreries, configuracions i fitxers de recursos necessaris per a implementar les funcionalitats que proporcionen les
PWA en aplicacions basades en Angular.

Document d’Arquitectura Especificacio Arquitectura Pagina30de 116
JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
MY Departament de Justicia

3 CONVENCIONS | RESTRICCIONS GENERALS

3.1 CONCEPTES | COMPONENTS

3.1.1 Arquitectura de Referéncia

Pel que fa a les aplicacions Angular, es seguira, a nivell general, I'especificacid definida a la documentacid oficial
d’Angular definida per Google: https://angular.io/guide/styleguide

3.1.2 Serveis, Components, Frameworks, Llibreries

3.1.2.1 Frontend d aplicacio

Pel que fa a la capa de presentacio, els principals components i versions en Angular 9 serien:

Component Versid Descripcié

@angular/common 9.1 Directives i serveis d'Angular habitualment necessaries.

@angular/core 9.1 Llibreries basiques del framework d'Angular.

@angular/forms 9.1 Directives i serveis d'Angular especialitzades en la creacid i
gestié de formularis (forms).

@angular/router 9.1 Llibreries necessaries per a controlar la navegacio i
enrutament en el context d'una aplicacié Angular.

@angular/cdk 9.1 Representa una abstraccid de les funcionalitats centrals que
es troben a la llibreria Angular Material (necessari per
primeng).

@angular/elements 9.1 Implementacié de HTML Custom Elements per a aplicacions
Angular.

@angular/service-worker 9.1 Llibreries per a la implementacié de Service Workers a
aplicacions Angular.

document-register-element 1.14.3 Implementacié de HTML Custom Elements.

justicia-ng 9.0 Serveis i components transversals per a aplicacions Angular
de Justicia.

log4javascript 1.4.15 Llibreria JavaScript necessaria per a la generacié de
informacié de log.

moment 2.24 Llibreria per a validar, manipular, i mostrar dates i hores.

ngx-translate 12.1.2 Llibreria per a la internacionalitzacié (i18n) d’aplicacions
Angular.

primeng 9.0 Col-leccié de components d'interficie d'usuari per Angular.

ra-ng 9.0 Framework per a propietats transversals d’Aplicacions
Angular de T-Systems.

rxjs 6.5.4 Conjunt de llibreries en JavaScript per desenvolupar
programes asincrons i basats en events.

zone.js 0.10.2 Llibreria necessaria per a Angular que gestiona el seu context
d’execucio.

perfume.js 5.1.0 Llibreria per a la monitoritzacio del rendiment web.

ngx-build-plus 9.0.6 Llibreria per a estendre les funcionalitats d’Angular CLI.

En Angular 13 serien:

Document d’Arquitectura Especificacio Arquitectura Pagina 31 de 116
JUS_Canigo3.6.5_CloudNative.doc

https://angular.io/guide/styleguide

W Generalitat de Catalunya T
MY Departament de Justicia

Component Versi6 Descripcié

@angular/common 13.3.11 | Directives i serveis d'Angular habitualment necessaries.

@angular/core 13.3.11 [Llibreries basiques del framework d'Angular.

@angular/forms 13.3.11 [Directives i serveis d'Angular especialitzades en la creaci i
gestié de formularis (forms).

@angular/router 13.3.11 | Llibreries necessaries per a controlar la navegacio i
enrutament en el context d’una aplicacié Angular.

@angular/cdk 13.3.11 | Representa una abstraccio de les funcionalitats centrals que
es troben a la llibreria Angular Material (necessari per
primeng).

@angular/elements 13.3.11 | Implementacié de HTML Custom Elements per a aplicacions
Angular.

@angular/service-worker 13.3.11 | Llibreries per a la implementacié de Service Workers a
aplicacions Angular.

justicia-ng 13.0.49 | Serveis i components transversals per a aplicacions Angular
de Justicia.

log4javascript 1.4.16 | Llibreria JavaScript necessaria per a la generacio de
informacié de log.

moment 2.29.4 | Llibreria per a validar, manipular, i mostrar dates i hores.

ngx-translate 13.0.0 [Llibreria per a lainternacionalitzacié (i18n) d’aplicacions
Angular.

primeng 13.4.1 Col-leccié de components d'interficie d'usuari per Angular.

ra-ng 13.0.0 Framework per a propietats transversals d’Aplicacions
Angular de T-Systems.

rxjs 75.0 Conjunt de llibreries en JavaScript per desenvolupar
programes asincrons i basats en events.

zone.js 0.11.6 Llibreria necessaria per a Angular que gestiona el seu context
d’execucio.

perfume.js 5.3.0 Llibreria per a la monitoritzacié del rendiment web.

Les llibreries utilitzades son un element viu i s normal que hi vagin apareixent noves versions o noves llibrerires per
facilitar el desenvolupament entre versions Angular.

3.1.2.2 Back-end d'aplicacio

El backend de I'aplicacio estara principalment basat en la versié 2.5.12 del Framework Spring Boot i en la versi¢ 3.6.5
del Framework Canigé del CTTI.

Les llibreries més rellevants de backend sén:

Component Versio Descripcid
canigo.core 504
canigo.web.core 3.04 L .
, Llibreries base del Framework Canigd 3.6.5
canigo.web.rs 3.04

canigo.persistence.mongodb 3.05

spring-boot-starter-logging 2.5.12 | Spring Logback

spring-boot-starter-web 2.5.12 | Spring Web MVC

spring-boot-starter-security 2.5.12 | Spring Security amb OAuth? Resource Server

Document d’Arquitectura Especificacio Arquitectura Pagina 32 de 116
JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya
N

)| Departament de Justicia

spring-boot-starter-oauth?2-

2.5.12
resource-server
spring-data-mongodb 2.5.12
spring-boot-starter-data- Spring Data MongoDB
2.5.12
mongodb
mongodb-driver-legacy 4.6.0
mongodb-driver-sync 4.6.0 | Drivers de MongoDB adaptats a 3.12, compatibles amb Canigd
mongodb-driver-core 4.6.0
ingfox- 2 2.9.2 0
ssg)r?r:];‘(?;ssv\\,/v;sseertui 2.8.2 Llibreries per suport a Framework Swagger 2
spring-boot-starter-actuator 2512
mcrometer—cgre 1.7.0 Endpoints de metriques Actuator i exportador en format Prometheus
micrometer-registry-
1.7.0
prometheus
opentracing-api 0.33.0
opentracing-spring-jaeger- 319
web-starter - . T .
)) OpenTracing, gesti¢ distribuida de logs en contenidors
opentracing-spring-cloud- 0311
starter -
jaeger-client 1.1.0
spring-cloud-stream 3.1.6
spring-cloud-starter-stream- 316 Publicacid i consumicié de Kafka Topics (operacions asincrones)
kafka o
shedlock-spring 4.14.0 | Planificador de tasques en cloud
lombok 1.18.22 | Simplificacié de codi
jus-canigo3.6-cloud-lib 1.0.31 | Llibreries de components comuns
justicia-jasper-fonts 1.0.0 | Fonts més comuns utilitzades per jasper-report

3.1.3 Bones Practiques de la Tecnologia de Referéncia

Pel que fa a les aplicacions Angular, es seguiran les bones practiques especificades a la documentacid oficial
d’Angular definida per Google: https://angular.io/guide/stylequide

Document d’Arquitectura

Especificacio Arquitectura Pagina 33 de 116
JUS_Canigo3.6.5_CloudNative.doc

https://angular.io/guide/styleguide

W Generalitat de Catalunya -« - -Svystems -
WY Departament de Justicia 1T

3.2 ALTRES CONVENCIONS | RESTRICCIONS GENERALS

3.2.1 Normatives de programacié

Al projecte es defineixen les segiients normatives sobre la capa de negoci:

* Java anguage specification https://docs.oracle.com/javase/specs/jls/se8/html/index.html

* Arquitectura CTTI APIs RESTful: millors practiques https://canigo.ctti.gencat.cat/blog/2016/01/api/

3.2.2 Gestié de la configuracié

Els entregables es deixen generalment a un gestor documental del Dept. anomenat PORTIC, malgrat aix0, aquest punt
s’ha d’acordar per cada projecte.

La entrega de codi a client, la construccid i el desplegament des fara segons normatives del SIC corporatiu,
consultables a https://canigo.ctti.gencat.cat/sic/

Build Deploy
Design Release Operate

Codii Construccio
configuracio aplicacio

[Gé:;xss Jenkins Pipeline, Remedy, eines CPD \
0 ~ 5 bme - @

Desplegament Notificacions

» b
#Aummat\tzamé Codi font &Artefactes

3.2.3 Procés de desenvolupament

Per a entregables del client, es seguira la metodologia MQS pels entregables (gestid de projecte i enginyeria del
software). Hi ha plantilles de client definides per a cada tipus d’entregable.

3.2.4 Eines de Desenvolupament i Area de Treball

S’ha generat una guia per tal de poder preparar un entorn de desenvolupament per part dels desenvolupadors.

S’han d'utilitzar les eines acordades per part dels proveidors amb CTTl i el Departament de Justicia a partir de les
definides de manera corporativa a les webs oficials (https://canigo.cttigencat.cat/sic/ i MQS-Eines:
https://qualitat.solucions.gencat.cat/eines/).

Document d’Arquitectura Especificacio Arquitectura Pagina34 de 116
JUS_Canigo3.6.5_CloudNative.doc

https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://qualitat.solucions.gencat.cat/eines/

AN Generalitat de Catalunya
MY Departament de Justicia

4 ESPECIFICACIO D’ARQUITECTURA

4.1 VISTA GENERAL

.-

Q 4 A1

U\

La vista general mostra les parts del sistema més importants des del punt de vista funcional i técnic, a alt nivell. Mostra

com les parts del sistema son distribuides a través dels elements de la infragstructura técnica (TI).

El seglient diagrama mostra les capes i tecnologies a alt nivell més rellevants de 'arquitectura JEE del Departament

Internet Intranet
Sistemes .
, » . . ., Informacié cap
d’informacié Sistemes d’informacid .
a sistemes
Internet Intranet
externs
Serveis Servels H
i i : Sistemes !
ﬁﬁ::,mn:: | APIManager B |
Backoffice Event BUS
= y H Corporatiu
= Serveis Transversals Autostore
T
)
e &)
g% Serveis Extranet Serveis Intranet
*Docker @ Spring Boot _*Ducker @ Spring Boot
: : ... §8 kafka

Gestor documental

&

Repositori
Documental
. mongoDB.

Base de dades

a» Repositori
W Transaccional
mongoDB.ORACLE

Document d’Arquitectura

JUS_Canigo3.6.5_CloudNative.doc

Especificacio Arquitectura

Pagina35de 116

El seglient diagrama mostra el mapa de serveis

Generalitat de Catalunya
Departament de Justicia

Backoffice

Serveis Transversals

Serveis Extranet

Serveis Intranet

Autosto

|l Repositori
umental

Besede dades

Repositori

mang R ISHERIOS

-
RED HAT
O OPENSHIFT

-- T - -Systems-

. Repositori
Documental

@ . mongoDB.

Repositori
Transaccional
mongoDB.ORACLE'

(" Serveis Extranet Servels Intranet)
(* Logging & Tracing
h Sistema Sistema Sistema Sistema
'.'4 K || ginformee dinformagié S informacid G é:::;,ﬂ;:,a
sarvei Servei servei Servel
B Caana
- .] »-‘!’m‘?«] g,ﬂ,] ..z;.;aﬂ
(" Manitoring & alerts L 1
5 ¥ L 2
(&) [+ servel servel Servei Sarvei ‘ﬁo
(=L es) 0| '|le.a gm@z, .:;,_@.. s
o = ¥ ¥ a
¥ L 2 =
—] Servei servel servel Servel a
P R &, .8 £ --ﬂu
. J X £ 3 o
o) ¥ k]
. servei servei servei Servei
& redis [+ g,_Q,] [..zhe.‘] &8 eh‘a.]
-/ \. J J
.
Gestor documental Base de dades
Autostore

<@

Els serveis al sistema es comunicaran entre si via invocacié de serveis. La comunicacid de I'exterior cap a negoci del

sistema es fara via APl Manager.

Document d’Arquitectura

Especificacio Arquitectura

JUS_Canigo3.6.5_CloudNative.doc

Pagina36de 116

T Generalitat de Catalunya A M .
MY Departament de Justicia ‘T Systems

4.2 VISTA DE CONTEXT

La vista de context descriu el sistema en el context de tots els seus sistemes veins.

En aquest punt s’especificara com la arquitectura es relaciona amb sistemes externs, tant en una direccio en relacions
que son d’entrada al sistema, com en I'altra direccid on les relacions son de sortida del sistema.

4.2.1 Invocacié des de sistemes externs cap a aplicacions internes

Entendrem per sistemes externs:
1. Aplicacions EJCAT tradicionals desplegades a servidors WebLogic
2. Altres aplicacions o sistemes d’informacié al Departament de Justicia
3. Aplicacions o sistemes externs al Departament de Justicia

La manera com qualsevol dels sistemes que accedeixi per internet realitzar invocacions a les aplicacions del sistema
EjCat+ sera a través del APl Manager de la nova arquitectura.

L’API Manager sera el punt d’entrada des d’Internet per a qualsevol peticié externa que arribi al sistema.

Internet I

Altres ¥
sistemes [API Manager]

Intranet

externs |
[

I

TEMIS]»[0SB] :
Intranet

|

P R

®@)©) @)

Servei 1 Servei 2 Servei 3 Servei 4 Servei N

RED HAT
OPENSHIFT

Sistema d’informacio

Gracies a I'’API Manager podrem tenir un Unic punt d’entrada al sistema:
= (Centralitzant temes de seguretat
= Enrutament cap a serveis finals
= Definicié de quotes i assignacio de recursos

= (Gestid multi-tenant

Document d’Arquitectura Especificacio Arquitectura Pagina37de 116
JUS_Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

4.2.2 Invocacié des d’'aplicacions EjCat+ cap a sistemes externs

Els mecanisme preferent quan s’hagi de consumir un servei extern al sistema sera consumir una API Rest. En sistemes
més antics que no puguin oferir serveis REST i s'hagin d'accedir amb altre tipus de protocol es podra fer Us de Sl
(Spring Integration). Mitjangant Sl es podran crear peces (serveis d’integracid) encarregades de rebre peticions REST
dels serveis interns i transformar aquestes peticions cap als protocols necessaris segons la plataforma o aplicacié que
s'’hagi de consumir.

Veure la guia [CU_ARQO12_lInteraccid_cap_a_sistemes_externs_(capa_negoci)] per més detall.

CES
O
jus-modulA e pod
REST Sistema extern
jus-int-ws-1
O p
(o_ jus-int-ws-2
jus-modulB
Document d’Arquitectura Especificacio Arquitectura Pagina 38 de 116

JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

4.2.3 Interficies amb sistemes interns

Considerarem sistemes interns totes aquelles aplicacions o serveis que segueixin arquitectura Canigé 3.6.5 Cloud
desplegats en el marc del mateix sistema d’informacio

Cada aplicacid/servei és propietari de les seves dades (al igual que en I'arquitectura CMO) i si necessita dades d’una
altra aplicacid/servei, les ha d’obtenir invocant el servei de negoci que publiqui cada aplicacié per a qué li faci arribar
les dades sol-licitades. En casos excepcionals pot necessitar disposar directament d’aquestes dades externes, encara
gue no és la solucié recomanada. Dins aquest mateix capitol explicarem aquests dos casos i quan pot estar justificat
accedir a dades externes sense invocar a un servei de negoci, tal i com ja passava a I'arquitectura CMO.

L’'arquitectura permet les seglients tipologies d’interficies entre aplicacions internes:

e Comunicacié interna capa presentaci6 — capa distribucié : (online / sincron) Serveis REST amb parametres
JSON, per a comunicacié front-end — back-end dins la mateixa aplicacio

e Comunicacio entre serveis interns del sistema d'informacid

o A la capa de presentacié: (online / sincron) Canvi de context entre les capes de presentacié de dues
aplicacions o microfrontends, mitjangant protocol HTTPS

o Alacapade negoci: (online o batch)

= (sincron) La capa de negoci de I'aplicacié A invocara a la capa d’integracié de I'aplicacio B
mitjangant invocacié de serveis via REST amb I'existencia intermédia d’'un Service Mesh per
enrutar les peticions cap al desti correcte

= (asincron) La capa d’accés a dades de I'aplicacié A enviara un missatge a un servidor Kafka
que sera recollit de forma asincrona per les aplicacions B que estigui subscrites al topic en
questio

o Ala capa de dades: (online / sincron) Cada aplicacié o servei només podra accedir a dues bases de
dades diferents:

= |’accés habitual sera a la seva BBDD local del servei on tindra totes les dades necessaries per
donar resposta al negoci, ja siguin dades propies o bé dades desnormalitzades d’altres serveis
(normalment de taules mestres, ocasionalment de negoci).

= En cas que per necessitats de negoci un servei concret hagi de fer creuament de dades amb
colleccions d’altres serveis tindra la possibilitat d’anar a la BBDD de consultes on disposara de
les col-leccions per a fer aquests creuaments o podra trobar col-leccions especifiques on ja hi
hagi aquestes dades creuades. Aquest escenari no és el recomanable donat que crea
dependéncies de N serveis contra una mateixa BBDD, la qual cosa és un anti-patrd
d’arquitectures de serveis on cerquem la independéncia en el seu cicle de vida. Per tant el seu
Us ha d’estar justificat.

4.2.3.1 Escenaris d'integracio a capa de dades.

Tal i com es ja va indicar les dades sdn propietat i responsabilitat d’un servei i si algu necessita aquelles dades podra
consultar-les via invocacié de serveis de negoci. Existiran escenaris on no sera recomanable obtenir aquestes dades
via invocacié de serveis com per exemple:

Document d’Arquitectura Especificacio Arquitectura Pagina 39 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

e Volum molt elevat de dades a retornar per part del servei
e Elevat nimero de peticions al servei de consulta

Per aquests escenaris on les invocacions via servei de negoci no sigui recomanable, es tractara de garantir que les
dades estan alla on son necessaries per donar resposta al negoci. Quan una dada d’un servei hagi d’estar disponible
també per a altres, pot ser necessari fer-la arribar a la resta de serveis que la necessitaran. En aquest sentit hi ha
diverses possibilitats com poden ser la réplica de dades (desnormalitzacié entre serveis) o I'accés a una base de
dades global de consulta.

A aquests escenaris mencionats, si no sén recomanables les invocacions via servei s’hauran de seguir les
recomanacions de la guia [CU_ARQO028 ARQ Integracié Capa Dades] d'integraci6 a capa de dades on s’expliquen els
diferents escenaris i eines que es poden utilitzar en funcié del les caracteristiques de la integracio.

4.2.3.2 FEleccio d’estrategies d'integracio
e Desnormalitzacid

Al treballar amb MongoDB existeix un canvi de paradigma respecte a les BBDD relacionals. En les BBDD
relacionals la informacid se separa en diferents taules i aquestes taules es relacionen entre elles mitjangant
FK. Quan arriba el moment de consultar dades a la BBDD es fan consultes i si cal, a la consulta, es relacionen
les taules pertinents per obtenir les dades desitjades. Amb BBDD MongoDB la idea ja no és aquesta doncs
les dades s’han d’emmagatzemar de manera que la seva consulta estigui optimitzada.

Quan una aplicacié existent passa a d'utilitzar BBDD relacionals a BBDD no relacionals la idea no és agafar
les taules del sistema i canviar-les per col-leccions per replicar un model com I'existent. El que cal fer és un
analisi més profund a nivell de negoci per saber quines entitats tenen sentit i com seran consultades pels
diferents processos de negoci.

Les dades son susceptibles de ser desnormalitzades dins les col-leccions que en fan Us. D’aquesta manera
passem d’un escenari on tenim, per exemple, dues taules relacionades a un escenari on tenim una col-leccié
que dins, com atributs de la col-leccid, té les dades desnormalitzades i per tant el que abans era una consulta
on hi havia dues taules implicades ara passa a ser una consulta sobre una col-leccié que ja conté les dades
gue necessitem.

Embedding Documents
MongoDB Schema Design

People People
{ {
_id: 1, _id: 1,
name: ‘Peter’, name: ‘Peter’,
city: ‘Salamanca’ city: ‘Salamanca’,
}
1
Document d’Arquitectura Especificacio Arquitectura Pagina 40 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

A MongoDB sera interessant aquest tipus d’estratégia donat que encara que es poden fer joins entre
col-leccions podria afectar negativament al rendiment. Per estudiar els criteris recomanats dins un modelat
orientat a documents, cal consultar la guia [CU_ARQO010.1 - Desnormalitzacié i modelatge del model de
dades].

Tot I'anterior aplica normalment a nivell intern de la base de dades MongoDB que utilitza el nostre servei.
Pero dins aquest capitol d'arquitectura d’integracio, estenem el concepte anterior de desnormalitzacio, i
incloem I'escenari on una dada cal actualitzar-la dins una col.lecci¢ externa al nostre servei, és a dir, a la base
de dades MongoDB d’'un o varis serveis externs. Aquest escenari es produira normalment amb dades
mestres, poc volatils i accessibles molt freqlientment per tothom. En situacions excepcionals es podria
considerar incloure altres dades de negoci, perd sempre amb justificacio i autoritzacid dels comites
d'aprovacio d’arquitectura (interns i/o de client), donat que sempre que sigui possible cal obtenir les dades
via invocacio de serveis de negoci.

Quan una dada canvia en origen (en la base de dades responsable d’aquelles dades), si hem escollit
estrategia de desnormalitzacié amb serveis externs, cal fer arribar el canvi d’aquella dada a totes les
col-leccions de totes les bases de dades on estigui desnormalitzada.

BBDD Consulta
Aquest és un cas particular encara que especial de dades replicades.

La BBDD de consulta sera una BBDD consultable pels serveis que ho requereixin on hi haura dades de les
diferents BBDD dels serveis. Aquestes dades poden estar normalitzades o replicades i les podrem trobar com
a col-leccions independents amb estructures iguals o similars que a les bases de dades dels serveis, 0 bé les
podem trobar amb altres estructures. Podrem trobar dades desnormalitzades de diferents col-leccions
agrupades en una, o també grans col-leccions que permetin obtenir d'una tacada conjunts de dades de
diferents serveis en una sola consulta.

Aquesta BBDD permetra realitzar consultes creuant diferents negocis.

Document d’Arquitectura Especificacio Arquitectura Pagina 41 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

4.3 ARQUITECTURA DE SEGURETAT

Els requeriments de seguretat determinats pels seglients requisits no funcionals

Aix0 és tradueix, a nivell d’arquitectura:

RNF CU_ARQ associat

Proveir d’un mecanisme d’autenticacio pels | CU_ARQOO1_Autenticacid Intranet
accessos al sistema des d’Intranet CU_ARQO002_Autenticacié Internet

Proveir d'un mecanisme de autoritzacid pels
accessos al sistema

CU_ARQO03_Autoritzacio

4.3.1 Nivells de seguretat

Les aplicacions sén responsables de la seguretat i I'accés sobre les seves funcionalitats i sobre les dades que manega
0 exposa. La seguretat és un concepte transversal a les funcionalitats i s’ha d’incloure al disseny de la aplicacio. El
principi mestre de la seguretat es el del “minim privilegi” que consisteix en que per defecte no es concedeix accés a
cap funcionalitat sense un permis explicit que garanteix que només qui ha d’accedir, accedeix.

Definim la seguretat en diferents nivells:

e Relacionat amb el context de la aplicaci6 (n/ivel/ Ode seguretat):

o modificacio dels permisos per defecte per administrar els components associats a la aplicacié que

O

son responsabilitat d'ella: per exemple, si a un contenidor tenim un Nginx o un 7omcat al que es
desplega la nostra aplicacid, s’han de modificar els permisos per defecte per altres desconeguts
pels desenvolupadors. Ho mateix al que es refereix als usuaris root dels sistemes operatius dels
contenidors. A aquest nivell es troben les propietats definides com “secrets’ d’ Openshift que
permetin treballar sense tenir que coneixer els usuaris i contrasenyes definides als entorns
productius. CTTl indica que s’han d'utilitzar imatges publicades al seu repositori corporatiu harbor
donat que es troben certificades respecte a la seva seguretat per CESICAT

Seguretat associada a elements externs a la aplicacio: la aplicacié no és responsable de si hi ha un
Firewall que evita 'accés a les seves serveis exposats, o d'un filtre de continguts extern, ... perd una
vegada té coneixement de la seva existencia, si que s'ha d’adaptar per tal de donar servei: pot-ser
ha de fer un canvi de port, demanar una excepcio al Firewal/o al filtre de continguts, ...

e Relacionats amb I'accés a les funcionalitats (n/vel/ 7 de seguretat):

O

Dins de les seves possibilitats, una aplicacid ha de tractar de garantir que no es produeix
“impersonation” es a dir, que un usuari es pugui fer passar per un altre.

= |a utilitzacié d'un foken JWT signat i comprovat sobre el Proveidor d’ldentitat permet
obtenir dades “fiables”. A les aplicacions Spring configurades per fer aquesta validacié del
foken, les dades incloses al context de seguretat es poden considerar “fiables”. Es
responsabilitat de la aplicacid utilitzar aquestes dades per validar que un usuari no tracta
de realitzar accions en nom d'un altre.

= Una aplicacié ha de superar una auditoria de 'organisme encarregat de la seguretat al
client abans de poder utilitzar-se en entorns productius. A la Generalitat es ho realitza
habitualment CES/CAT que participa a les “fase 0’ dels projectes i realitza una auditoria
sobre la aplicacid a un entorn no productiu (preproduccio generalment). Aquesta auditoria

Document d’Arquitectura Especificacio Arquitectura Pagina 42 de 116

JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

fa una comprovacié dels mecanismes d’explotacié de vulnerabilitats més greus o habituals
ales aplicacions de tipus Web.

o Siuna aplicacié exposa funcionalitats, al disseny s’ha d’indicar que han d’acomplir els usuaris per
poder utilitzar-les:

= S és possible un accés public: per exemple accés a funcionalitats exposades a una web
publica a internet, o el sistema de /ogin.

= Siés unaccés pubic per tots els usuaris del sistema: es necessari que I'usuari hagi fet /ogin
al sistema i no li cal més privilegis.

= Si és només un conjunt d’usuaris ho han de poder utilitzar: definir al disseny que han
d’acomplir aquests usuaris; pertanyer a un grup o tenir una caracteristica, etc... aquesta
decisi6 es pot realitzar sobre les dades de seguretat de I'usuari (Context de seguretaf), fent
validacions sobre les dades rebudes amb altres dades propies de la aplicacio, etc...

= Lesvalidacions de seguretat d’aquest nivell es fan als components que s’encarreguen de la
comunicacié amb capes superiors, normalment els REST Controllers.

e Relacionats amb les dades (nive// 2 de seguretat):
o Un usuari pot pertanyer a un grup autoritzat a una funcionalitat perd no tenir accés a la visualitzacio
0 execucid de totes les accions associades a aquesta funcionalitat. Es responsabilitat de la aplicacié
verificar que cada usuari concret només pot veure i executar aquelles accions sobre les que te

privilegis.

o En moltes ocasions aquest nivell de seguretat s’ha de “programar’ com part de les consultes.
seleccio de les dades del propi usuari, o seleccié de les dades sobre aquelles dades funcionals a
les que I'usuari ha de tenir accés: “duna unitat sobre la que 'usuari té permisos’. Normalment com
forma part de com s'accedeix a les dades, aquest nivell de seguretat esta implementat a les
consultes de les dades, als DAQ.

o Les dades exposades cap al context també s’han de verificar (/ogs exposats, per exemple),
metriques, etc, per tal de no mostrar informacié “sensible” sense la proteccié adient.

Al definir les comunicacions entre components del sistema s’ha de tenir en consideracio que:

e Comunicacions entre serveis del mateix sistema d’informacié que es trobin desplegats al mateix namespace
no s’hauria de passar per I'APl Manager.

e Comunicacions entre serveis intranet no haurien de passar per Api Manager
e Comunicacions entre serveis del propi Departament de Justicia no haurien de passar per Api Manager
e Comunicacions amb origen intranet en altres departaments caldria valorar si han de passar per APl Manager.

e Comunicacions amb origen internet haurien de passar per Api Manager

4.3.2 Descripcid técnica de la solucié de seguretat

e Integracié amb GICAR

Document d’Arquitectura Especificacio Arquitectura Pagina 43 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

El diagrama logic d'integracio amb GICAR és el seglient:

Main app angular

[login

Redireccio autenticacio GICAR

\ 4

Jus-apache-shibboleth - GICAR

GICAR response headers

[<portal>/api/login
(gicar headers)

Jus-portal-service

L’agent de Shibboleth amb la configuracio pertinent per autenticar als usuaris contra als directoris corresponents de
GICAR per Justicia, en aquest cas, de la Intranet, amb les credencials que tingui disponibles a tal efecte. (usuari i
contrasenya, targeta criptografica, certificats...)

Els moduls Portals de la Intranet o la Extranet estaran configurats com destinataris de les operacions d’autenticacio, i
seran els responsables de generar les autoritzacions pertinents en forma de tokens JWT.

No es contemplara, de moment, possibilitat de contingéncia en cas que GICAR no es trobi actiu.
e Autoritzacio amb tokens
Es basa a 'autoritzacié en tokens JWT en format OpenID Connect (OIDC).

Un cop rebuda I'autenticacid correcte de 'usuari, el portal del sistema adient haura de recollir del corresponent
component de gestio d’usuaris la resta d’informacié necessaria de 'usuari connectat.

Per generar els tokens JWT utilitzarem la funcionalitat de /dentity ProviderOauth? del producte Keycloak.
S’hauran de definir diferents tipus d’autoritzacions, segons cada tipus de destinatari:

e Usuari d'intranet o d’extranet (per exemple, grant_type: client_credentials)

e Sistema extern (grant_type: client_credentials)

A partir d’aqui, la informacid rellevant de I'usuari s’enviara com parametres a les crides OAuth2 (/access_token,
/refresh_token), i quedara incorporada dins el payload del token, en forma de c/aims.

Finalment, la resposta sera aquest token JWT en format OIDC, que els moduls transferiran a les aplicacions desti per
poder autoritzar a I'usuari connectat.

Document d’Arquitectura Especificacio Arquitectura Pagina 44 de 116
JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

)) fauth/realms/ejcat/protocol/openid-connect/token
/<“5“§”5>/3 pi/userinfo (grant_type=client_credentials)
(user_id) (userclaims)

.] OAK
———————————— -+ Jus-portal-service @« Q
User claims JWT + refresh token

sendRedirect +
Cookies (JWT + refresh)

o
Jus-usuaris-service Microfrontend angular

Un cop generat el token, qualsevol peticio a les aplicacions desti hauran d’incloure la capcalera;

Authorization: Bearer + <token JWT>

El format del token OIDC sera el seglient:

{
"aud": R
"sub": "XXXXX",
"application": ...,
"scope": ...,
"iss": "https://...keycloak.justicia.intranet.gencat.cat/.../openid-connect/token",
"tierInfo": ...,
"keytype": ...,
"subscribedAPIs": ...,
"consumerKey": ...,
"exp": 1593519921,
"iat": 1593516321,
"JEit xxx,
"userInfo": {

"paraml”:"valuel",

Tots els serveis incorporen una capa d’Spring Security, configurada per validar en cada peticié REST el token JWT
rebut. Al estar en format OIDC, no sera necessari que en cada crida el modul tingui que invocar al proveidor
d’identitats per desxifrar i validar el token.

Dins la configuracié aportada en el modul ja s'incloura un endpoint OIDC per recollir la clau publica del certificat amb
que el proveidor d'identitats ha signat cada token, d’aquesta manera els moduls els podran validar de forma
autonoma, eliminant requests innecessaries al sistema. Aquest endpoint s'exposa en format JWKS (JSON Web Key
Set).

Si 'autoritzacié es correcte, Spring Security permetra executar la crida REST al servei generant un Security Context
dins Spring amb la informacié de I'usuari connectat. Aquesta informacié s’extreu dels c/aims inclosos en el token, tal
com s’ha comentat préviament.

Si el token és invalid, o esta caducat, es retornara la corresponent excepcio de seguretat, que s’acabara transformant
en un error 4017 . Unauthorized.

Document d’Arquitectura Especificacio Arquitectura Pagina 45 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

Des del frontend es podra invocar un endpoint de refresc de token, en cas que s’apropi la seva data de caducitat.

(4 OAK +
JWKS

[/modulXXX/api/... + verification
Auth Bearer+ JWT

Microfrontendangular <~ Jus-modulXXX-service
200 OK/

401 unauthorized

Com a T-Components per a la gestio de 'autoritzacié a s'inclouen:
o JusticiaAuthenticationEntryPoint; Gestio de la resposta davant dels accessos no autoritzats a I'aplicacio.
o JusticiaCryptoHelper: Encriptacié de dades amb un parell de claus publica/privada
o JusticiaCustomEncoder: Codificacié de payload entre frontend i backend per dades a protegir

o JusticiaGrantedAuthoritiesExtractor: Conversié de token JWT en un Security Context d’Spring

Document d’Arquitectura Especificacio Arquitectura Pagina 46 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya Svetems -
MY Departament de Justicia J

4.4 ARQUITECTURA PROCESSOS PLANIFICATS

El producte estandard per la gestié dels processo planificats sera ShedlLock als projectes del departament de Justicia.

Aquest producte permet la planificacié de tasques als pods amb control per evitar execucions simultanies de la
mateixa tasca per les diferents instancies en execucio.

o= N
@ jus-servei

<Configuration>
ShedLock

<Method>
—> @Schedulled
@SchedulledLock

RED HAT'

OPENSHIFT

NG

) mongoDB

Document d’Arquitectura Especificacio Arquitectura Pagina 47 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya
WY Departament de Justicia

4.5 PROPIETATS TRANSVERSALS DEL SISTEMA

Tota arquitectura té propietats transversals que ha de resoldre. Per tal de no augmentar en excés la quantitat
d’informacid inclosa en aquest document, aquestes propietats es descriuran dins les diferents guies de frontend. Ala
guia [CU_ARQ_32-33 - Capa de presentacid (general)] es diferenciaran les propietats transversals de la capa de
presentacio de la resta de capes.

Les propietats transversals per a la capa de presentacid (Angular) que es descriuran la guia [CU_ARQ_32-33 - Capa
de presentacié (general)] :

Autentificacid i seguretat
Configuracié multi-entorn
Internacionalitzacié
Gestio d'errors

Cache

Gestid de 'estat (components 'Stateful')
Context d’usuari

Gestio d'events
Generaci6 de Logs
Navegaci6 i enrutament
Microfrontends

PWA

Monitoritzacio

Les propietats transversals que es descriuran de la resta de capes son:

Gestio de Transaccions

Gestié d’Excepcions

Gestio de la sessio d’usuari
Validacions a capa client i servidor
Logging

Caching

Configurabilitat

Internacionalitzacio

Document d’Arquitectura Especificacio Arquitectura

JUS Canigo3.6.5_CloudNative.doc

Pagina 48 de 116

W Generalitat de Catalunya T
WY Departament de Justicia

5 VISTES DE L’ARQUITECTURA DE REFERENCIA
5.1 GENERAL

La vista general mostra les parts del sistema més importants des del punt de vista funcional i técnic, a alt nivell. Mostra
com les parts del sistema son distribuides a través dels elements de la infraestructura técnica (TI).

El seglient diagrama mostra les capes i tecnologies a alt nivell més rellevants de I'arquitectura JEE del Departament:

Document d’Arquitectura Especificacio Arquitectura Pagina 49 de 116
JUS Canigo3.6.5_CloudNative.doc

[Generalitat de Catalunya LML,)
I Departament de Justicia T SyStemS

5.1.1 Vistalogica

Aquest diagrama mostra les principals tipologies de components que conté cada aplicacid. Alguns elements de tipus
T-Component, per facilitar la comprensid, no s’han inclos en aquest diagrama, encara que es fara referéncia en altres
apartats d’aquest document.

Tampoc s’ha inclos dins el diagrama, pel mateix motiu, la referéncia a tota la capa del framework Canigé que dona
suport a la resta de capes d'aplicacio. Aquesta dependencia es pot observar a I'apartat Vista d’implementacio.

Document d’Arquitectura Especificacio Arquitectura Pagina 50 de 116
JUS Canigo3.6.5_CloudNative.doc

N

AN Generalitat de Catalunya - Systems-

Departament de Justicia
5.1.2 Vistade desplegament

5.1.2.1 Entorn de Produccio (JUPRO)

La vista de desplegament descriu les configuracions dels components hardware on s’executa el sistema. Documenta
els nodes, que representen tant entorns d’execucié (servidors amb certa capacitat de processador i memoria) com
software instal-lat en ells (servidors d’aplicacions, servidors web, base de dades, etc.)

El diagrama indica també els artefactes que formen cada aplicacid, i com es fa el desplegament de cada part al node
corresponent.

Disposarem d’entorn d’Integracid(INT), de Preproduccid (PRE), de Produccié (PRO) i de Formacid (FOR)

Els entorns de PRE i PRO tindran la mateixa configuracio.

L’entorn de INT tindra els mateixos components pero no caldra garantir alta disponibilitat ni ser un entorn igual a PRO
i per tant és susceptible de ser més reduit que PRE i PRO

L’entorn de FOR compartira maquinaria amb PRE per estalviar costos i per tant tindra la mateixa configuracio.

A continuacié detallem la vista de desplegament de I'Productiu (PRO) on es mostrara dos tipus d'informacio: vista de
desplegament logica i infraestructura hardware.

e e T N
1 1
] 1
| Client Pc Internet = Client Pc Intranet = H
: “ExecutionEnvironment” “ExecutionEnvironment” :
: Web Browser Web Browser :
l ___]

HTTPS HT[TPS
P 1
' |
i “API Manager” I |
]

1

|
\ ool ____ ;

HT[TPS

“ExecutionEnvironment”

QOpenshift

“ExecutionEnvironment”

Openshift Container Manager

“Openshift layers”
> <Service>, <Routing®, .

HTTP/|

(PODS)

wironment”

Environment Container

“ExecutionEnvironment”
Container
TT

P Cuntainer*:] semv - Cunlainerﬂ
| image m-ﬂ R ::::V TP image
______________________________ ___H$___________________." S
/ OracleDriver MongoDB Driver Redis Driver“Openshift”

HCP
“ExecutionEnvironment”
Container

“ExecutionEnvironment” “ExecutionEnvironment” “Execution
Nodes Oraciie NodesMeongo Environment”

Nodes HCP
Oracle ﬂ Mongo {]
Database Database
Schema Schema

Redis @

Database

DBAAS
"VM” a “VM i 5 MVMU ﬁ
\
2 —i
“ExecutionEnvironment” “ExecutionEnviranment” “Execution “ExecutionEnvironment”
Oracle Database MongoDBClusterd.2 Enviranment” Redis5

Document d’Arquitectura Especificacio Arquitectura Pagina 51 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

Podem observar les segiients caracteristiques al diagrama anterior:
* Distingim diferents tipus de client:

O un client de tipus web, on comengara la navegacio a través del browser. Segons el tipus de client
accedira a través d’un APl Manager cap la plataforma Openshift o accedira directament.

o un client de tipus aplicacio (exclusivament un altre servei del sistema) que podra accedir a la logica
de negoci mitjangant una crida a les funcionalitats del servei desti.

o altres sistemes externs que vulguin accedir a un modul de Justicia.

* Elcontingut estatic no es desplegara a aquests servidors, s’haura de desplegar al contenidor corresponent a
I'Openshift.

e |’API Manager redirigeix les peticions dels clients que estan a Internet cap a I'Openshift

* Els containers serveixen els recursos de presentacid (Angular) i a ells es desplega la part estatica de
I'aplicacio (imatges, estils, javascript d’Angular, etc.).

* Als contenidors es despleguen els artifacts amb les aplicacions.

* Al servidor de HCP es poden instal-lar documents, estructura de carpetes, etc, mitjancant I'’API exposada pel
servei GDO+.

Document d’Arquitectura Especificacio Arquitectura Pagina 52 de 116
JUS Canigo3.6.5_CloudNative.doc

M Generalitat de Catalunya T
WY Departament de Justicia

5.1.3 Vistad'implementacié

La vista d’implementacio descriu la organitzacio dels elements d’aplicacié des del punt de vista del desenvolupador.

5131

La vista

Organitzacio del projecte, capa presentacio

d’'implementacié de la capa de presentacid es descriu a I'apartat Vista d’implementacié de la capa de

presentacio.

5.1.32

Organitzacio del projecte, serveis

Pkg implementation View : Target deployable/

servei jar

B pom.xml

src.main.java.cat.gencat.justicia.<aplicacio>.project

8 ProjectApplication.java

configuration controller mongodb
B <aplication>WebSecurityConfig.java B <endpoint1>Controller.java B JusticiaMongoConfig.java
<endpoint2>Controller java o
i B !] domain
g ..
aggregations :
S src.main.resources
A E <aggregation>OutputType.java
kafka service . [E application.yml
B +..
E KafkaListener java E Kafkalistener java
B KafkaStreams.java B KafkaStreams.java collections
B . g - B <servei>Cl<collection>.java
model impl g .
B KafkaMessage java B KafkaMessage.java fields
E E.

B <servei>Cl<field><collection>java

.

A continuacié es descriuen els subsistemes principals del servei i la seva funcio:

e Subsistema configuration: Conté informacié de configuracié de Swagger i Seguretat

e Subsistema controller: correspon a la capa de distribucié de la Vista logica de 'apartat 5.1.1. En els projectes
Canigo 3.6.5 Cloud en aquesta capa web només exposa I’API de serveis RESTful.. Contingut:
o REST Controllers

e Subsistema model: Conté les interficies i classes que han de ser accedides des de la resta de capes logiques.
Dins d'aquest subsistema no pot haver-hi 1dgica de negoci. Contingut:
o Domain Model objects, que no requereixen de persistencia
o Model de persistencia generat amb les entitats JPA, i les seves extensions modelats com entitats a mida

(EntityCustom)

e Subsistema mongodb: Conté tota la Idgica de negoci relacionada amb I'accés a BBDD
o Classes per mapejar col-leccions i objectes
o Classes amb logica: agregations i collections

Document d’Arquitectura Especificacio Arquitectura Pagina 53 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya
WY Departament de Justicia

‘T

e Subsistema service: correspon a la capa de negoci de la Vista logica de I'apartat 5.1.1. Contingut:

o Interficies dels serveis
o Implementacions dels serveis

Altres subsistemes:

e Subsistema audit: Conté la ldgica de negoci relacionada amb I'auditoria

o Classes per personalitzar la informacié d’auditoria

e Subsistema Kafka: Conté tota la logica de negoci relacionada amb les integracions amb Kafka

o Classes per mapejar missatges kafka
o Classes amb logica: listeners i streams

e Subsistema reports: correspon a la capa de negoci de la Vista logica de I'apartat 5.1.1. Contingut:

o Interficies dels serveis
o Implementacions dels serveis

jus-[NOM_SERVEI]-service/src/main/java:
cat.gencat.justicia.[NOM_SERVEI]
.project
.common.audit
.common.crosscutting.exceptions
.configuration
.controller
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.kafka
.model
.model
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.view
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.extdto
.adapter

.connector
.mongodb
.domain
.aggregations
.collections
.fields
.custom
.template
.dao
.impl
.external
.reports
.service
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.impl
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.shedlock
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.security

Document d’Arquitectura Especificacio Arquitectura

(Aplicacio)
(auditoria)
(Excepcions)
(Configuracions)
(REST Controllers)

(Kafka Listeners)
(Kafka Model)
(Domain Model objects)

(View Model objects)

(DTOs amb serveis externs)
(View Model ¢ Domain Model)
(ExternalDTO ¢ Domain Model)
(Connectors per protocol)

(Entities)
(Extensions Entities)

(Interficies DAO)
(Implementacions DAO)

(External DAO)
(Reports)
(Interficies service)

(Implementacions service)

(Tasques planificades)

(Extensions JWT de cada modul)

Pagina 54 de 116

JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

.util

Per tant, la part dinamica d’un projecte, i la del desplegable final, tindra aquesta estructura de components

]
Pkg implementation View : Project sources / Pkg implementation View : Target deployable
jus-<nom_servei>-service servei jar
0+ src £+ cat
g pom.xml 3+ META-INF
3+ BOOT-INF

Els fonts s’organitzaran als projectes segons s’indica a I'apartat Organitzacio dels packages - serveis.

Els Controller de la capa de distribucid només fan referéncia en compilacié al model de domini, i les interficies dels
Serveis associats amb els que comunica amb la capa de negoci.

Es Spring en temps de runtime qui fa la injeccié (@Autowired) dels components de negoci als controladors de la capa
REST.

Un Controlador REST no cridara mai directament a un servei d’'un altre modul. Sempre delegara en un Servei aquesta
tasca, que alhora utilitzara un ExternalSystemDAO.

Els components encarregats de la integracié també accedeixen a la capa de negoci mitjangant injeccions Spring. De

nou, en compilacio accedeix a les interficies, i per injeccié d’Spring (@Autowired) en temps de runtime s’accedeixen
als serveis associats.

5.1.3.3 Organitzacio dels packages - capa de presentacio

La organitzacio dels packages a la capa de presentacié es descriu a I'apartat Vista d'implementacid de la capa de
presentacio.

5.1.3.4 Organitzacio dels packages - serveis
Els noms dels paquets Java han de comengar amb cat.gencat.justicia.[NOM_SERVEI].
Els paquets han d’estar estructurats a partir d’aquest nivell segons aquests nivells jerarquics:

e Enprimerlloc, segons capes tecniques (horitzontal)

e En segon lloc, segons ambit funcional (vertical): només si hi ha molts elements, i s'aplica a I'Gltim nivell de la
jerarquia (controller, view, etc):

Document d’Arquitectura Especificacio Arquitectura Pagina 55 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

jus-[NOM_SERVEI]-service/src/main/java:
cat.gencat.justicia.[NOM_SERVEI]

.project (Aplicacio)
.audit (auditoria)
.common.crosscutting.exceptions (Excepcions)
.configuration (Configuracions)
.controller (REST Controllers)

.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]

.kafka (Kafka Listeners)
.model (Kafka Model)
.model (Domain Model objects)

.[AMBIT FUNCIONAL 1]

.[AMBIT FUNCIONAL 2]

.view (View Model objects)
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]

.extdto (DTOs amb serveis externs)
.adapter (View Model o Domain Model)
(ExternalDTO ¢ Domain Model)
.connector (Connectors per protocol)
.mongodb
.domain
.aggregations
.collections
.fields (Entities)
.custom (Extensions Entities)
.template
.dao (Interficies DAO)
.impl (Implementacions DAO)
.external (External DAO)
.reports (Reports)
.service (Interficies service)

.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.impl (Implementacions service)
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.shedlock (Tasques planificades)
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.security (Extensions JIWT de cada modul)
.util

Els Controller de la capa de distribucid només fan referencia en compilacié al model de domini, i les interficies dels
Serveis associats amb els que comunica amb la capa de negoci.

Es Spring en temps de runtime qui fa la injeccié (@Autowired) dels components de negoci als controladors de la capa
REST.

Un Controlador REST no cridara mai directament a un servei d’un altre modul. Sempre delegara en un Servei aquesta
tasca, que alhora utilitzara un ExternalSystemDAO.

Els components encarregats de la integracio també accedeixen a la capa de negoci mitjangant injeccions Spring. De
nou, en compilacio s’accedeix a les interficies, i per injeccid d’Spring (@Autowired) en temps de runtime s’accedeixen
als serveis associats.

Document d’Arquitectura Especificacio Arquitectura Pagina 56 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

Document d’Arquitectura Especificacio Arquitectura Pagina 57 de 116
JUS Canigo3.6.5_CloudNative.doc

[Generalitat de Catalunya A .
Y| Departament de Justicia T SyStemS

5.2 CAPA DE PRESENTACIO — ANGULAR

5.2.1 Nomenclatura i responsabilitats

L'arquitectura de la capa de presentacié segueix la arquitectura estandard d'una aplicacid basada en Angular
composta pels seglents blocs principals:

s

Document d’Arquitectura Especificacio Arquitectura Pagina 58 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

Les responsabilitats dels components d’aquesta capa son:

Component Responsabilitat Nomenclatura

Moduls Consoliden components, serveis i directives en blocs cohesius de | [Nom].module.ts
funcionalitat, cadascun centrat en una area de caracteristiques,
domini de negoci de l'aplicacid, flux de treball o una col-leccié
comuna de serveis.

Components Un component controla una part de la pagina denominada com a | [Nom].component.ts
vista (view). La logica del component es defineix dins una classe
—les funcionalitats per a controlar la vista—. El component
interactua amb la vista mitjancant les seves propietats i métodes.

Metadades Les metadades informen a Angular com processar una classe | @NgModule,

(modul, component, directiva, etc.). @Component,
@Directive

Plantilles Una plantilla defineix la vista (view) d'un component. Una plantilla | [Nom].component.html,
és un HTML que indica a Angular com representar el component. [[Nom].component.css

Directives Donen les instruccions a Angular de com transformar el DOM | [Nom].directive.ts
durant el procés de creacid de les vistes a partir de les plantilles.

Bindings Mecanisme per coordinar parts d'una plantilla amb parts d'un | N/A

component. Afegeix unes marques (binading markup) a 'HTML de
plantilla per dir a Angular com connectar ambdds costats.

Serveis Implementen caracteristiques que sén independents de | [Nom].service.ts
qualsevol vista especifica, proporcionen logica o dades
compartides a través de components, o encapsulen interaccions
externes.

Per a cada component es defineixen els seglients patrons arquitectonics:

Document d’Arquitectura Especificacio Arquitectura Pagina 59 de 116
JUS Canigo3.6.5_CloudNative.doc

Generalitat de Catalunya

Departament de Justicia

5.2.1.1 Moduls (Modules)

-« - -Systems-

L’'aplicacido Angular tindra com a minim una classe de tipus modul (Module): EI modul arrel (Root Module) i que,
seguint la convencid estandard, s’anomenara AppModule. A més del root module I'aplicacié estara composada per
moduls funcionals, cadascun com a un bloc cohesiu dedicat a un domini d’aplicacié, flux o conjunt de capacitats
similars. Un modul d’Angular, sigui el root o qualsevol altre, és una classe (TypeScript) amb @NgModule com a

decorator o metadada.

L'arquitectura modular de l'aplicacio esta composta pels segiients 4 tipus de moduls:

= Arrel (Root).

= Funcional (Feature).

= Core.

= Compartit (Shared).

«Mbduls
(Funcional)

aFlantillas

Business
Component

Template

aCompanenis

Businsss
Component

s Serveis

Featurefibodule

ButinessService

g]

g

g

imponts

Front-End / Client Layer ngulsr

=

«Middluls g)
AppModule [Root)
sComponents EI
AppCompanent [Root)
b
imiports

Impars

1

gl

«Plantllas
Ui Template

i

L miporta nomas una
wigada durant
Taemencada de Faplcacss

aMdduls

&

=Sarvel Singlatons
Sampled Service

i

@ Els moduls d’Angular no hereten I'accés als components o directives declarades a altres moduls. Per exemple,
tot el que sigui importat al Root Module AppModule és irrellevant per a un modul funcional i viceversa.

Document d’Arquitectura

Especificacio Arquitectura

JUS Canigo3.6.5_CloudNative.doc

Pagina 60 de 116

W Generalitat de Catalunya T
WY Departament de Justicia

5.2.1.1.1 Metadades

Les metadades d’'un modul d’Angular;

Declaren quins components i directives pertanyen al modul.

Fan algunes de les classes publiques per tal de que les plantilles d’altres components les puguin fer servir.
Importen altres moduls i els seus components, directives i pipes necessaris pels com-ponents en aquest
modul.

Proporcionar serveis al nivell d'aplicacié que qualsevol component d'aplicacié pugui utilitzar.

Les metadades més importants que descriuen el modul sén:

declarations - Las classes de tipus ‘view' que pertanyen al modul. Angular té tres tipus de ‘view’ classes:
components i directives. S’ha de declarar cada component en una (i només una) classe NgModule. Cada
component creat al modul s’ha de incloure a 'array declarations.

exports - El subconjunt de declarations que seran visibles i utilitzables a les plantilles (templates) d'altres
moduls.

imports - Classes exportades per altres moduls | que sén necessaries per plantilles de components declarats
en quest modul. Només classes de tipus NgModule s'inclouen en el array imports. No es pot incloure
qualsevol altra tipus de classes en les importacions (imports).

providers - Proveidors de serveis amb els que aquest modul contribueix a la col-leccié global de serveis.
Aquest seran accessibles en qualsevol altra part de I'aplicacié Angular.

bootstrap - La vista (view) principal de I'aplicacié, anomenada root component. El component root que
Angular crea i inserta a la pagina web principal index.html i a totes les altres views de I'aplicacio. Només el
modul Root ha de configurar la propietat bootstrap.

Document d’Arquitectura Especificacio Arquitectura Pagina 61 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

5.21.1.2 Modul Root

Tota aplicacié Angular té, com a minim, una classe de tipus modul, el mddul Root. Com a convencid, el modul Root és
una classe anomenada AppModule i ubicada en un fitxer TypeScript anomenat app.module.ts. Altres caracteristiques
importants son:

= S’executa el procés d’arrancada (bootstrap) d’aquest modul per tal d'iniciar I'aplicacié en un fitxer TypeScript
anomenat main.ts file.

= Entre d'altres coses, el procés d’arrencada (bootstrap) crea el component (o components) inclosos en el
array bootstrap (metadata) i els inserta al DOM del navegador.

= (Cada component iniciat (bootstrapped) és la base del seu propi arbre de components.
= S’insereix el component arrel al iniciar I'aplicacié. Aquest procés d’arrencada (bootstrap) desencadena una
cascada de creacions de components que completen I'arbre de components de I'aplicacio. EI component

arrel (root) s’anomenara seguint la convencié com a AppComponent.

S'importen la resta de moduls funcionals, que representen col-leccions de funcionalitats relacionades, dins el modul
Root.

Document d’Arquitectura Especificacio Arquitectura Pagina 62 de 116
JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

52.1.1.3 Moduls funcionals (Feature Modules)

Un modul funcional és una classe TypeScript amb I'anotacio @NgModule (decorator) i les metadades corresponents,
de la mateixa forma que es defineix el modul Root. Les metadades d’un modul funcional tenen les mateixes propietats
que les del modul Root.

Existeixen dues diferéncies tecniques significants:

1. L'aplicacid Angular s’inicia arrencant el modul Root; Importem un modul funcional per tal d’ampliar la
funcionalitat de I'aplicacio.

2. Un modul funcional pot exposar o ocultar la seva implementacid als altres moduls.
Altres consideracions importants respecte als moduls funcionals:

= Un modul funcional proporciona un conjunt de funcionalitats enfocades en un domini de negoci de
I'aplicacio, un flux de negoci, un servei (comunicacié HTTP, enrutament) o un conjunt d'utilitats relacionades.

= EImoduls funcionals permeten particionar I'aplicacié en arees d’interes i proposit especific.

= Un modul funcional col-labora amb el modul Root i la resta de moduls funcionals mitjancant els serveis que
proveeix i el conjunt de components i directives que es defineixen com a exportacions.

= Un modul funcional i tots els seus components, plantilles (views), etc., estaran ubicats en un directori
especific separat per a diferenciar els elements que hi pertanyen respecte als del modul Root i la resta de
moduls funcionals.

= Pel que fa als components, cada modul ha d’importar les seves propies dependéncies sense tenir en compte
si les mateixes dependencies es van importar al modul Root o en qualsevol altre modul funcional. Per
exemple, encara que tinguem multiples moduls funcionals, cadascun d’ells haura d'importar el modul
d’Angular CommonModule.

Sitenim una aplicacié multi-modular s'implementara Lazy Loading. El gran avantatge del Lazy Loading és que podem
carregar els nostres recursos quan es necessitin i no tots alhora al iniciar I'aplicacio. Aix0 ajuda a disminuir el temps
d'inici.

A continuacié es mostren convencions i bones practiques en I’ organitzacio dels Lazy Loaded moduls d’una aplicacid
Angular:

= Crear un modul NgModule per a cada area funcional (feature) ubicant el fitxer del modul en la mateixa
carpeta amb nom que l'area funcional. Aixo facilita I'Us del LazylLoading i la seva reutilitzacio.

= Collocar el contingut de funcionalitats lazy loaded en una carpeta que contindra un component
d’enrutament, els seus components fills, i els seus assets i moduls relacionats.

Document d’Arquitectura Especificacio Arquitectura Pagina 63 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

5.2.1.1.4 Modul compartit (Shared)

El modul compartit incloura els components i directives comuns i les compartira amb els moduls que els necessitin.

= Elmodul compartit es crea per a fer Us comu de components i directives disponibles per al seu Us en les
plantilles dels components en molts altres moduls.

= No s’especifiquen proveidors de serveis singleton a nivell d'aplicacié (app-wide) en un modul compartit ja
que un modul carregat de forma lazy (lazy loaded module) que importi el modul compartit faria la seva propia
coOpia del servei.

= Un modul compartit inclou només components i directives. No hauria d’incloure serveis. Els serveis estan
relacionats amb funcionalitats i en la majoria de casos no s’han de incloure en un mddul compartit,

b.21.1.5 Modul Core

El modul Core és un modul que s'importara només una vegada en el moment d’iniciar I'aplicacio no s'importara enlloc
més.

= Els serveis de I'aplicacié de tipus Singleton que es registren exactament una vegada, en l'injector Root quan
s'inicia l'aplicacio, han de ser inclosos en el modul Core.

= Tots els components d'un sol Us que apareixen només a la plantilla del component Root AppComponent han
de serinclosos en el modul Core.

= Només el modul Root ha d’'importar el CoreModule en la seva qualitat d’orquestrador de l'aplicacié en el seu
conjunt.

Document d’Arquitectura Especificacio Arquitectura Pagina 64 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

5.2.1.2 Components

Un component és tot alld que és visible per a l'usuari i que pot ser reutilitzat multiples vegades dins de I'aplicacié
Angular. La ldgica d'un component es defineix dins d'una classe amb @Component com a decorator de TypeScript.

= Laresponsabilitat d'un component és limita a l'experiencia d’usuari.

= Un component ha de fer d’intermediari entre la vista (plantilla) i la logica de l'aplicacié (que sovint inclou
alguna nocié d'un model).

= Un component ha de contenir propietats i metodes per a l'enllag de dades (data binding) i delegar tota

funcionalitat de negoci als serveis.

Des del punt de vista dels components I'aplicacié Angular pot ser modelada com un arbre de components anidats,
tenint cadascun un ambit aillat:

E «Components {] «Plantillax :
' | Reot Component Root Template :
: {1 <> I
S i S — T
- o
-
e FEA. S M,
: «Components 3:] «Plantillas - «Components g:] «Plantillas :
| Child A Component Child A Template i +| Child B Component Child B Template '
! §! <> L {} <> !
, e —— . e ——— I
|
'
: «Components {] «Plantilla: .
1 | GrandChild Component GrandChild Template .
: i ik '

Cal diferenciar les responsabilitats entre els diferents tipus de components:

1. Components de tipus contenidor d’alt nivell i especifics d’'una aplicacié amb accés a model de domini de
I'aplicacio.

2. Components de presentacid responsables de la interficie d’usuari i del comportament de les entitats
especifiques de la seva API (propietats i events especifics del component).

Document d’Arquitectura Especificacio Arquitectura Pagina 65 de 116
JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

52.1.2.1 Metadades (Metadata)

Les metadades informen a Angular sobre com ha de processar la classe. En TypeScript s'assigna el decorator
@Component a la classe per tal que Angular I'identifiqui com a component,

El decorator @Component permet modificar una classe i afegir-hi metadades a les propietats i a les funcions:

= Selector - Element (tag) que es fa servir per a informar Angular per tal de crear i inserir una instancia d'aquest
component.

= templateUrl - Ubicacid (relativa al modul) de la plantilla HTML d’aquest component.

= providers - Colleccié de proveidors (dependency injection) per als serveis que el component requereix.

5.2.1.3 Plantilles (Templates)

Les plantilles defineixen les vistes (views) dels components. Una plantilla (template) és una forma de HTML que
informa a Angular sobre com representar graficament el component.

= El component té les responsabilitats del controller/viewmodel, per la seva banda la plantilla representa la
view.

= ['Us del'element (tag) <script> esta prohibit.

No cal incloure els elements <html>, <body> i <base>. La resta d’elements estandard de HTML estan acceptats.

5.2 1.4 Directives

Una directiva modifica el DOM per tal de canviar l'aparenca, el comportament o la disposicié dels elements inclosos
en el DOM. Les directives son un dels blocs basics de construccid d’aplicacions Angular. De fet, els components
d’Angular sén en gran part directives amb plantilles.

Hi ha tres tipus principals de directives a Angular:
= Component - Directives amb una plantilla.

= Atributs - Directives que canvien el comportament d’'un component o element perd no afecten a la plantilla.
hauria de funcionar de manera que el component és agnostic i al detalls d'implementacio: ngClass, ngStyle.

= Estructurals — Directives que canvien el comportament del component o element influint com es representa
(dibuixa) la plantilla. Directives estructurals incloses a Angular:
- *nglf : Obligatori I'Gs de I'asterisc (*).
- *ngFor: Obligatori I'is de I'asterisc (*).1
- ngSwitch: No incloure I'asterisc (*) amb ngSwitch.

- *ngSwitchCase, *ngSwitchDefault: Obligatori I'is de I'asterisc (*).

Document d’Arquitectura Especificacio Arquitectura Pagina 66 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

5.2.1.5 Bindings

Els bindings sén el mecanisme de coordinacié de parts d'una plantilla amb parts d'un component. S’afegiran bindings
a la plantilla HTML per tal d’informar a Angular com ha de connectar ambdos costats. Els bindings de dades sén
també importants per a la comunicacid entre components principals (pares) i secundaris (fills).

«Flantillas g:]

Template
L

Property Binding Event Binding

«Components E]
Component

— 0 <
«Metada. . g:]‘

Metadata
{ template }

Com mostra el segiient diagrama, hi ha quatre formes de bindings de dades. Cada forma té una direccid - cap al
DOM, des del DOM, o en ambdues direccions:

DOM {] «Components
[Ivaluell Cnm?;ﬁnent

[property | = "walus”

[event) = "handler”
[{ ng-model)] = "property™
Document d’Arquitectura Especificacio Arquitectura Pagina 67 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

La interpolacié {{value}} mostrara el valor de la propietat indicada del component com una cadena de text.
Per exemple: {SampleComponent.Name} mostraria el valor de la propietat SampleComponent.Name dins
I'element del DOM (per exemple dins d’un camp de text). Normalment es fa servir aquest métode quan es
tracta de passar cadenes de text com a valors.

El property binding [property] passa el valor de una propietat del component. L’ds més comu sera el de
passar el valor d’'una propietat del component a una propietat d’un element del DOM. Per exemple: <img
[src] = “SampleUrl” (on “SampleUrl” és una propietat del component). Quan establim una propietat d'element
a un valor de dades que no sigui una cadena de text, s’ha d'utilitzar el tipus property binding.

El binding de event (event) enllaca una accié de 'usuari (per exemple un clic a un botd) a un métode del
component (handler).

El binding de doble sentit (Two-way binding) [(ng-model)] serveix tant per mostrar una propietat del
component com per actualitzar aquesta propietat quan l'usuari realitza canvis.

Direccié de les dades \ Sintaxi \ Tipus de binding
One-way {{expression}} . Interpolation
from data source [target] = expression - Property
to view target bind-target = "expression Attribute
Class
Style
One-way (target) = "statement™ Event
from view target on-target = "statement"
to data source
Two-way [(target)] = "expression” Two-way
bindon-target = "expression"
Document d’Arquitectura Especificacio Arquitectura Pagina 68 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

52.1.51 Binding Targets

El desti (target) d'un binding de dades és un element dins el DOM. Depenent del tipus de binding, el desti pot ser una
propietat (element | component | directiva), un event (element | component | directiva) event, o (rarament) un nom
d’atribut.

La segient taula ho resumeix:

Tipus de binding Target Exemples

Property Element property
<hero-detail [hero]="currentHero"></hero-
Component property details
Directive property <div [ngClass] = "{selected:
isSelected}"></div>
Event Element event <button (click) = "onSave()">Save</button>

<hero-detail

Component event (deleteRequest)="deleteHero()"></hero-detail>

Directive event <div (myClick)="clicked=$event">click me</div>
Two-way Event and property <input [(ngModel)]="heroName">
Attribute Attribute (the exception) <button [attr.aria-label]="help">help</button>
Class class property <div [class.special]="isSpecial">Special</div>
Style style property <button [style.color] = "isSpecial ? 'red’
'green'">
Document d’Arquitectura Especificacio Arquitectura Pagina 69 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

52152 Events personalitzats (Custom events)
Per tal de generar events personalitzats s’ha de fer servir un EventEmitter d’Angular:

= Elcomponent crea un EventEmitter i 'exposa com una propietat.

= El component executa EventEmitter.emit(payload) per tal de disparar un event, passant com a parametre
informacio rellevant (payload pot ser de qualsevol tipus).

Els components que tinguin definit un binding a aquesta propietat detectaran i tindran accés a la informacio rellevant
através de l'objecte event$.

2.2 1.6 Serveis

Servei és una categoria amplia que abasta qualsevol valor, funcid o caracteristica que sigui necessaria per a
I'aplicacio:

= Un servei ha de serunaclasse amb un propdsit concret i ben definit.

= Angular no té una definicié especifica per a serveis. No existeix una classe base de servei i no existeix cap
lloc a on registrar un servei.

= De forma general, els components son els consumidors del serveis.
= Les classes de tipus component han de ser simples. No han d’obtenir les dades des del servidor, validar

l'entrada dels usuaris o registrar informacié directament a la con-sola. Han de delegar aquestes tasques als
serveis.

Document d’Arquitectura Especificacio Arquitectura Pagina 70 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya
WY Departament de Justicia

5.2.1.6.1

Injeccid de dependencies (Dependency injection)

La injeccio de dependéncies és una manera de proporcionar una nova instancia d'una classe conjuntament amb totes
les dependéncies que requereix. La majoria de les dependéncies sdn serveis. Angular fa servir la injeccié de
dependéncies per a proporcionar als components els serveis que necessiten. Angular sap quins serveis necessita un

component examinant els tipus dels seus parametres al constructor.

Quan Angular crea un component, primer demana un injector per als serveis que el component requereix. Un injector
manté un contenidor d'instancies de servei que ha creat anteriorment. Si una instancia de servei sol-licitat no esta en el

contenidor, l'injector en crea una nova i l'afegeix al contenidor abans de tornar el servei a Angular.

Quan tots els serveis sol-licitats han estat resolts i retornats, Angular executa el constructor del component amb
aquests serveis com a arguments:

Injector

2]

wServeis
Service A

wServeis
SampleBusinessService

aServein {]

Service C

wServeis {]

Service D

[
|
1
xSampleBusinessServices
|
|

]'.lu'r f,_-f-"fi-

-

wComponents
S5ampleComponent

constructor [business Service)

2

-

[
Llinjector crea una instancia
del servei
SampleBusinessService |
l'afegenc al contenidor abans
de tornar €l servel a3 Angular.
Angular executs el
constructor del component
SampleComponent amb
squesta instancia del servel
com a largurment

businessService.

Cal afegir I'anotacié @Injectable() a la classe de servei per tal d’informar Angular que aquesta classe es pot fer servir
amb I'injector de dependencies. Punts importants que cal recordar sobre la injeccié de dependéncia a Angular;

Document d’Arquitectura

Un proveidor és una ‘recepta’ per a la creacio d'un servei.

Lainjeccio de dependencia esta per defecte a Angular i s'utilitza a tot arreu.
Un injector manté un contenidor d'instancies de servei que ha creat.

Un injector pot crear una nova instancia de servei fent servir un proveidor (Provider).

Especificacio Arquitectura
JUS Canigo3.6.5_CloudNative.doc

Si afegim el parametre { providedIn: 'root' } en I'anotacié @Injectable, el servei es registrara directament en
I'injector root i d’aquesta forma no hem d’afegir el servei en 'array providers de I'AppModule o del
CoreModule.

Tindrem una Unica instancia del servei (Singleton) tant si fem servir providedin: root o si incloem el servei en
I'array providers a I’AppModule o al CoreModule.

Pagina 71 de 116

M Generalitat de Catalunya
WY Departament de Justicia

5.2.2 Vista estatica

En el segiient diagrama de classes podem veure un exemple de quins soén els diferents elements que intervenen en la

capa de presentacié:

‘ <

| -

L_

«Components
BaseComponentA

SampleBassProperty: string

SampleBaselleth

«Metadadess

FeatureAModule SharedModule
alletadadess eMetedadess [«Metadadess «Metsdadess
+ + importe [+ exports. + @NgModule(: Metadades
T T T
! L : . 1
I [i it sinstantistes — — — — sinstantisten
I ! I ﬂ[vy
| winstantistes I |
| B | «Components «Companents «Components
1 «instantistzs Lo __= FeatureAComponentA FeatureAComponentC SharedComponent
I i sinstantistes
| W St - «<Metadadess
+ @Input: Met <M 5 I N Me
| «Compeonents ::FL } Metadades: @lnput: Met:
| FeatureAComponents + @Outpy 2 + @lnput: Mets o @Output: Meta
| N " — |+ @ocutput Me
! + monSenviceA, BusinessServiceA, BusinessServiceA) + noelar)
Metadadess + =
| th + ca:
|+ @input: Met + + 5 o Tormna
- @Output: Met -
! @Cutput: Mets, ~ aMetadadess «Mstsdsdess «Metadadess
||+ constu mmonSarviced) + @Componentimodule.id, template): M + @Componentitemplate, module id): Metadades + @Componentitemplats, module.id): Metsdades
! eMetadadass
} + @Component(emplate}: Metedaded ' | ___________ clsem — — ——————— — =
I
| Iy zusen 1
I 1
| ViewlilodelA |
||+ sampleatributea: int !
| |+ SampleAtiributeB: string e
I 1
I 1

IIJSE
Veuses

W v

T
|
|
|
|
|
wusen
|
|

Componentimodule. id, template) M

W

‘ Common ServiceA ‘

| BusinessServiceA

n, int, string]: ViewhModelObjec
n, int): string

1): ViewhlodelObjects

ModelObjectH] ‘

Document d’Arquitectura

Especificacio Arquitectura
JUS Canigo3.6.5_CloudNative.doc

Pagina 72 de 116

W Generalitat de Catalunya T
WY Departament de Justicia

5.2.3 Vistadinamica

En el seglient diagrama es mostra un exemple molt basic dels processos dinamics que s'executen entre els
components d'una aplicacié Angular des del navegador, enviant informacié a la capa REST del servidor i mostrant les
dades de nou al navegador:

sd S-001 - Accés a API REST/
% «@Component» «@Injectable» «@lnjectable»
P p | f i vice ApiService
Usuari Salut
(from Actors) Brovlvser Anglular : : : API REST(Server)
| i | | |
" clickevent() N | : : : |
! | 1 | 1
call(handler) : : : : :
«event binding» onClick$event) | ! | :
businessMethod() : :]
| |
; applyBusinessLogic() : :
sendRequest(data) | :
POST (json) |
«HTTP Request»
e - ———
|
alt |
[HTTP STATUS = 400, 401, 500] :
|
|
|
o ; catchError() :
|
|
|
|
|
<= |
; applyBusinessLogic() T :
R e i l !
|
< T [I I
- T [[!
N _Il,-r] «data binding» ¢ : : : :
| | | | | | !
' ' ' ' ' ' '
Document d’Arquitectura Especificacio Arquitectura Pagina 73 de 116

JUS Canigo3.6.5_CloudNative.doc

Generalitat de Catalunya S R .
Departament de Justicia T Systems

5.2.4 Vistad'implementacid

L'aplicacié Angular utilitzara una estructura basada en components, que és una bona manera d'assegurar-se codi facil
de mantenir, encapsulant la nostra logica de negoci. Un component és basicament una aplicacié independent en
general auto-continguda en un Unic arxiu o0 una Unica carpeta amb cada funcié com un arxiu: estil, plantilla, proves
unitaries, etc. i la classe de component. La segient figura mostra I'organitzacio en carpetes de les diferents parts
d’una aplicacié Angular;

pkg Implementation View /

front-end

+angular.json
+index. html

+karma.conf.js
+ package.json
+tsconfig.json

+ tslint.json

src
= +maint.ts i
assets environments
= + polyfills.ts
=i
= + =] + environment.prod.ts
+tests.ts &5 S| 7 EOACEE Sk
+fonts = +environment.ts
=i
E' +images + hes.salut.gencat.cat.json
El +js + hes.salut. preproduccio.gencat.cat.json
+ hes.salut.intranet.gencat.cat.json
+ hes.salut.development.json
app

+app.component [css | html | ts] core

[=| +app.module.ts —
) + constants. ts N
+ app.routing.module.ts =N g config
= = + core.module.ts
+auth.component.ts = .
+index.ts +cache.json
+ config.ts

+log_local.json

+log_remote.json

+ home.component [html | ts]

feature-a
services model
=] +feature-a-base.component.ts =
+ base.service.ts + capsalera-data.ts
+ feature-a-cerca.component.ts =) . = »
— + download-file.service.ts + cerca-peticions-resultat-ext.ts
+ feature-a-detall.component [html | ts] E = . §
—) + error-manager.service.ts +jus-perfil-sse.ts
+ feature-a-llistat.component html | ts] = — . i B
= + master-data.service.ts + llista-accions-peticio-ext.ts
+feature-a.module.ts = =) .
= . + propietats-aplicacio.service.ts + perfil-usuari-params.ts
+ feature-a.routing.module.ts — . o
=) + propietats-aplicacio.ts
+ feature-a.service.ts

shared
+index.ts —|
+shared.module.ts eI EE i18n

+ base.component.ts +lang_ca.json
+ canvi-context.component [html | ts] +lang_es.json
+ detail-base.component.ts

+ forbidden.component [html | ts]

+ formulari-capsalera.component [html | ts]
+ page-not-found.component.ts

+ unauthenticated.component [html | ts]

Document d’Arquitectura Especificacio Arquitectura Pagina 74 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

A continuacio es descriuen les carpetes que formen I'aplicacié i la seva responsabilitat:

src: Directori arrel de la estructura de carpetes que conformen tots els components de I'aplicacio.
assets: Carpeta on s’ubicaran els fulls d’estil, imatges i llibreries de JavaScript de tercers.

environments: Carpeta con s’ubicaran els fitxers de configuracid i classes de definicié de parametres pels
diferents entorns.

app: Directori arrel de la estructura de carpetes del codi de I'aplicacio.

core: Directori arrel de la estructura de carpetes del codi de I'aplicacié que correspon al modul Core (Veure
Modul Core).

shared: Directori arrel de la estructura de carpetes del codi de I'aplicacié que correspon al modul compartit
(Veure Modul compartit (Shared)).

i18n: Conté els fitxers JSON que contenen els literals i missatges en els diferents idiomes de I'aplicaci.
config: Carpeta amb fitxers de parametres de configuracié generals de 'aplicacié (no depenen de I'entorn).

layout: Carpeta amb les classes i plantilles dels components que defineixen les diferents parts de les que es
composa el disseny visual de I'aplicacio.

featureA: Carpeta que conté tots els fitxers necessaris del modul funcional featureA (plantilla, modul
d’enrutament, codi de la classe del component, estils especifics, etc.).

Document d’Arquitectura Especificacio Arquitectura Pagina 75 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

52.4.1 Angular CL/
Es fara servir Angular CLI com a Unica eina de gestio durant el desenvolupament cobrint les seglients necessitats:

e Generacid automatica de codi basic per a moduls, components, directives i serveis.
o Gestio del Module Loader (WebPack).
e Analisis estatic de codi TypeScript (via tslint).
e Servidor de I'aplicacié per al desenvolupament en local.
e Gestiod de la configuracio dels tests unitaris.
e Generaci6 de desplegable de I'aplicacié (build).
= Angular CLI és una interficie de linia de comandes que ajuda a crear nous projectes Angular des de zero o
agregar-ne diversos elements a una aplicacié Angular existent (scaffolding).

= El projecte es basara en un projecte base creat amb aquesta eina que contindra tots els elements necessaris per
posar tot en funcionament i amb una estructura d'aplicacions basada en les bones practiques per a un projecte
Angular.

= Peramésinformacio sobre Angular CLI veure: https://github.com/angular/angular-cli/wiki

0.24.2 Generacio d’estils

S'utilitzara el framework ‘Bootstrap 4’ per tal de dotar a I'aplicacié d’un disseny que s’adaptara al dispositiu de 'usuari.
Els estils de I'aplicacié Angular estaran basats en fulles d’estil CSS generades a partir de fulles d’estil SASS.

SASS (Syntactically Awesome Style Sheets) és una extensié de CSS que permet I'Us de variables, importacié d’altres

fulls d’estil, regles CSS jerarquitzades, etc. Al mateix temps que manté la compatibilitat amb CSS. En concret es fara
servir la sintaxi SCSS per a la programacio de les fulles d’estil.

e Elprocés de generacié de fulles d’estil CSS a partir dels scripts SCSS estara gestionat per I'eina Angular CLI.

e Peramés detalls sobre SASS veure: https://sass-lang.com/

Document d’Arquitectura Especificacio Arquitectura Pagina 76 de 116
JUS Canigo3.6.5_CloudNative.doc

https://github.com/angular/angular-cli/wiki
https://sass-lang.com/

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

5.24.3 Proves unitaries

Per a la programacid i execucid de les proves unitaries de I'aplicacié Angular es faran servir les eines Jasmine i Karma
respectivament.

Karma és una eina que ens permet, directament des de la linia de comandes, carregar (iniciar) navegadors i executar
tests (per exemple, amb la llibreria Jasmine) dins d'aquestes instancies. Els resultats de les proves es mostren també a
la mateixa linia de comandes. Karma també és capag de monitoritzar els arxius de codi en desenvolupament per
detectar-hi canvis i executar de nou les proves automaticament.

e Elprocés d’execucié dels tests unitaris mitjangant Karma estara gestionat per I'eina Angular CLI.
e Peramés informacié sobre Karma veure: http://karma-runner.github.io/2.0/index.html

Per a la programacié de les proves unitaries de I'aplicacido Angular es fara servir el framework Jasmine. Els tests
programats fent servir el Jasmine descriuen les proves en un format llegible per a les persones, de manera que és més
facil d'entendre que esta sent provat.

e Encrearun nou component o servei via Angular CLI es creara també el test unitari corresponent (spec).
e Peramésinformacio sobre Jasmineveure: https://jasmine.github.io

Document d’Arquitectura Especificacio Arquitectura Pagina 77 de 116
JUS Canigo3.6.5_CloudNative.doc

http://karma-runner.github.io/2.0/index.html
https://jasmine.github.io/

m
AU L/

Generalitat de Catalunya
Departament de Justicia

5.3 CAPA DE DISTRIBUCIO — SERVEIS REST

5.3.1 Serveis RESTFul

L’arquitectura descrita en aquest document es basa en un model de serveis REST, enfocat en tractar la informacio i

les operacions com a “recursos”.

REST (REpresentational State Transfer) ens permet definir APIs de funcionalitats orientades a Internet, utilitzades per

qualsevol dispositiu capac d’efectuar peticions per HTTP.

Es un model que aporta major simplicitat que altres solucions basades en crides SOAP, o RPC-XML. El servidor (back-
end) proveeix accés als recursos a través dels métodes exposats en la seva AP, i el client (front-end en HTML5)
gestiona aquesta informacié localment (en aquest cas, com hem indicat, amb el framework Angular).

Aquest tipus d’arquitectura, on el servidor no requereix guardar cap estat conversacional amb els clients que hi
accedeixen, es coneix com RESTful. Facilita I'escalabilitat de les aplicacions, i la carrega del servidor és menor.

Les operacions s’identifiquen per URI’s, i els recursos per identificadors globals. REST pot utilitzar diferents tipus de
representacio de la informacié intercanviada amb els seus clients. Actualment, JSON és el format més utilitzat, i és en

el que es basara I'arquitectura REST de Justicia.

Amb REST, s'utilitzen els classics métodes HTTP per gestionar la informacié dels recursos de la nostra APl web:

* GET: proveeix accessos de només lectura als recursos

* POST: creaci6 de nou recurs

* DELETE: eliminacio de recurs

* PUT: modificacié de recursos

* OPTIONS: obtenir la llista d’operacions permeses en un recurs
Exemples: una API de gestio de usuaris amb REST:

Consulta d’un usuari especific:

GET /modul-webcontext-root/rest/user/{id}

Consulta d’un llistat paginable d’usuaris:

GET /modul-webcontext-root/rest/user/list?rpp=5&first=0&filters={...}
Creacio d’un usuari:

POST /modul-webcontext-root/rest/user

FORM params: { idUsuari : ..., nomUsuari ; ..., carrecUsuari : ...}

5.3.2 Bones practiques de disseny de serveis REST

Un servei és considera estrictament RESTful si pot satisfer les seglients restriccions:

Document d’Arquitectura Especificacio Arquitectura
JUS Canigo3.6.5_CloudNative.doc

Pagina 78 de 116

W Generalitat de Catalunya T
WY Departament de Justicia

Identificacio dels recursos: Els recursos individuals es troben identificats a les peticions mitjangant URIs. A més,
aquests recursos es troben conceptualment separats de la representacié que es retorna al client.

Manipulacid dels recursos per mitja de les seves representacions: El client -sempre que tingui permis i per mitja
de la representacié d'un recurs-, té prou informacid per a modificar o esborrar aquell recurs al servidor.

Missatges autodescriptius: Cada missatge intercanviat entre el client i el servidor conté la informacid necessaria
per processar-lo.

Separaci6 client-servidor: D'aquesta manera el client no es preocupa de I'emmagatzematge de les dades i aixi
s'aconsegueix que el seu codi font sigui més portable. Quant al servidor, no es preocupa de l'estat del client, fent
gue aquest pugui ser més escalable. EI desenvolupament del client i del servidor pot ser independent I'un de
I'altre mentre la interficie uniforme entre els dos no sigui alterada.

Stateless: La comunicacid client-servidor no requereix que el servidor hagi de guardar informacié del client entre
peticions consecutives. Com s'ha dit, cada missatge del client conté prou informacid per a satisfer la peticio.

Cacheable: Les respostes del servidor poden guardar-se en una memoria cache, sigui de manera implicita,
explicita 0 negociada. L'objectiu és minimitzar -en els casos en que sigui possible-, les interaccions client-servidor,
fent que el client accedeixi a la representacio del recurs guardada en cache i millorant el rendiment del sistema.

Layered system: El client no assumeix que hi ha una connexio directa amb el servidor final. Poden existir sistemes
software o hardware entre ells. Per exemple, hi pot haver un servidor intermedi que guardi en cache les respostes
del servidor. Un altre exemple seria el d'un servidor intermedi que actui com a balang de carrega, millorant
l'escalabilitat i minvant els danys davant la possibilitat d'haver de fer front a atacs de denegacié de servei (DDoS).
Altres elements situats entre el client i el servidor final poden ajudar a millorar les politiques de seguretat del
sistema.

Document d’Arquitectura Especificacio Arquitectura Pagina 79 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

5.3.3 Nomenclatura i responsabilitats

Les responsabilitats dels components d’aquesta capa REST son:

Objecte Responsabilitats Nomenclatura

Son els punts d’entrada al back-end de | xxxController.java
la nostra aplicacié web.
extends

JusticiaMainController.java
Es tracta d'una capa ‘“lleugera”.
Defineixen I'API de serveis disponibles,
i com accedir a la informacié dels
recursos exposats.

Controlador REST

(@RestController)
Els Controladors REST, per si mateixos,

només gestionen la seguretat de les
seves crides (autoritzacid, basada en
JWT), el tractament de les dades
d’entrada i sortida en format JSON, i els
codis de retorn HTTP.

Deleguen als serveis les crides a negoci
de l'aplicacié: accés a BD, o altres
moduls o components externs.

Representacio orientada a objectes del | xxxViewModel.java
model de parametres d’entrada i
sortida del serveis REST.

Aquesta informacié s'obté dels Serveis
en forma de Domain Model (o en altres
casos, Entities o extensions de les
mateixes), pero es fa una renderitzacio
prévia al format Unic entre front-end i

View Model back-end: JSON.

El View Model s'adaptara a les
necessitats de definicid de la nostra API
REST. En alguns casos, la
transformacié de View Model a o
Domain Model sera gairebé immediata.
Perd per altres tipus de servei, sera
necessari tipus més complexes per
retornar la informacié (llistats
paginables, ...)

Document d’Arquitectura Especificacio Arquitectura Pagina 80 de 116
JUS Canigo3.6.5_CloudNative.doc

Generalitat de Catalunya T
Departament de Justicia

Patrd Singleton. Aquests objectes | xxxViewAdapter.java
View Adapters transformen els View Model en Domain
Model, en els dos sentits.

Spring boot aplication El nostre model REST sera implementat | xxxApplication.java
en tecnologia Spring boot. Indica el
(@SpringBootApplication) | puntinicial de la aplicacid.

Web Security config Defineix la configuracié de seguretat de
Spring Security sobre I'API REST a

(@Configuration nivell d’autoritzacio, gestio d’errors,

@EnableWebSecurity) securitzacio a nivell de paths, etc.

Classe que implementa la generacio, | JusticiaTokenHandler.java
validacio, i refresc de tokens JWT, i
també la gesti6 la informaci6 de 'usuari | JusticiaTokenDetails.java
gue s'emmagatzema en cada token

Handler Tokens JWT

Components proporcionats per Canigd | JusticiaResponseEntityExceptionHandler.java
en el modul de REST, que modelen
totes les respostes possibles, i | JusticiaBusinessException.java
gestionen de forma comuna es
excepcions, retornant el codi HTTP | JusticiaDataAccessException.java

adient:

Control REST derrors JusticiaSystemException.java
200: OK

JusticiaAuthenticationEntryPoint.java
400: Bad Request
500: Internal Server Error

Etc...

Contenidor ~ per configurar la | JusticiaSwaggerConfig.java
Gestié de Swagger? documentacié amb Swagger 2 en la
nostra API REST

5.3.4 Format JSON

JSON (Javascript Object Notation) és un format de text lleuger per a intercanvi de dades majoritariament utilitzat en
serveis REST, gracies a la seva simplicitat i pes reduit. Exemple estructura JSON:

{
"menu": {
"id": "file",
"value": "File",
"size": 1024,
"popup”: {
"menuitem": [
{
"value": "New", "onclick": "CreateNewDoc()"
Document d’Arquitectura Especificacio Arquitectura Pagina 81 de 116

JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

1A

"value": "Open", "onclick": "OpenDoc()"
3o

"value": "Close", "onclick": "CloseDoc()"
}

}
En els projectes de Justicia, tots els serveis REST utilitzaran JSON com a format pels parametres d’entrada i sortida.

La transformacié de JSON a objectes Java és automatica per les aplicacions Spring Boot. El suport per la conversié de
missatges HTTP de Spring selecciona Jackson automaticament si ho troba al classpath de la aplicacio.

Document d’Arquitectura Especificacio Arquitectura Pagina 82 de 116
JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

5.3.5 Seguretat (JWT i Spring Security)

La seguretat en les crides a I'API de serveis REST estara implementada amb JWT (JSON Web Tokens) seguint els
estandards fixats per Arquitectura CTTI en quant a projectes Canigd 3.

Aquesta estara basada en tokens JWT en format OpenlD Connect.

Es delega en Spring Security la gestié de la seguretat, JWT es el mecanisme de transport de la informacié
d’autoritzacid de les crides, basat en tokens que es configura en Spring.

5.3.56.1 Configuracio Spring Security

S’han de configurar les propietats per tal que el Spring pugi comprovar la validesa d’un token rebut com part d’'una
sollicitud d’'execucid d’un servei. Aquestes propietats variaran d'un entorn a un altre, el seglient exemple es per un
entorn de desenvolupament:

spring:
security:
oauth2:
resourceserver:
jwt:
issuer-uri: http://integracio.keycloak.justicia.intranet.gencat.cat/auth/realms/ejcat
jwk-set-uri:
http://integracio.keycloak.justicia.intranet.gencat.cat/auth/realms/ejcat/protocol/openid-
connect/certs

S’ha de configurar la seguretat de I'API que exposa el servicio mitjangant la definicié d’una classe anotada com
@Configuration de Spring Boot, on també es pot configurar el CORS.

@Configuration

@EnableWebSecurity

@EnableGlobalMethodSecurity (prePostEnabled=true)

public class XXXWebSecurityConfig extends WebSecurityConfigurerAdapter ({

@Override
protected void configure (final HttpSecurity http) throws Exception {

http.oauth2ResourceServer () .jwt () . jwtAuthenticationConverter (jwtAuthenticationConverter ()
) i
http.exceptionHandling () .authenticationEntryPoint (new
JusticiaAuthenticationEntryPoint());

http
.sessionManagement () .sessionCreationPolicy (SessionCreationPolicy.STATELESS) .and ()
.cors () .and()

.csrf () .disable()

.authorizeRequests ()

.antMatchers (
"/v2/api-docs",
"/configuration/ui",

) .permitAll ()

.antMatchers (HttpMethod.OPTIONS) .permitAll ()
.anyRequest () .authenticated() ;

}

@Bean

CorsConfigurationSource corsConfigurationSource () {

final CorsConfigurationSource source =

return source;

Document d’Arquitectura Especificacio Arquitectura Pagina 83 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

5.3.5.2 Intercanvi de JWT entre client i servidor

Generalment, totes les crides REST de la nostra APl han d’estar protegides, amb intercanvi de tokens JWT en la
comunicacié HTTP.

Browser Server

POST Jauthenticate
username=_..&password=...

Y

A

HTTP 200 OK
{token: \LJWT...}

GET fapifuser
Authorization: Bearer ... JWT...

Y

validate
token

A

HTTP 200 OK
{ name: “fon”}

Un exemple (molt basic) de token JWT amb expiracio, credencials, i rols:

HEADER.

eyJhbGc1i01JIUzUxMiJ9.eyJ1eHALOJEBODY2NTMw
NDIsInN1YiI6ImpvYW4iLCJhdXRob3JpdGlleyI6I «
1JPTEVFVVNFU1iJ9.ZBhkgj9t2SPS3-qp2Jdjh4X-

ghLSEiWhbi5hDLb3kL6FXNW418aFF5VsogfAj1AC2
JrIjdzkWZ_rnsVtDxcXLgeyJhbGeci0iJIUzITNiIs PAYLOAD
InR5cCI6IkpXVCJIY.eyJzdWIi0iIxMjMBNTY30Dkw
TiwibmFtZSI6IkpvaG4gRGI1TIiwiYWRtaW4iOnRyd
WV9.TJVA950rM7E2¢cBab38RMHrHDCEfxjoYZgeFON
Fh7HgQ

L’autoritzacié de crides amb Spring Securityi T sera:

El servidor sempre verificara I'existencia d’'un Headeramb nom “Authorization” en cada request a I’API REST.

El format d’aquest Headerha de ser “Bearer “ + token JWT. Exemple:

Bearer eyJhbGciOiJIUzUxMiJ9...

Si el Headerno existeix, o el token JWT és incorrecte o esta expirat, es rebutjara la peticio.

El control de la resposta de [lautoritzacié es delega en una classe Entry Point a mida
JusticiaAuthenticationEntryPoint, per centralitzar la tipologia i el format d’error a retornar. En tots
els casos, es recorda que la nostra APl REST sempre acaba retornant missatges JSON (excepte en casos
especifics d’streaming de fitxers, que seran gestionats pel propi component de Canigoé de File Upload)

Spring Security Utilitza les propietats definides per comprovar el token enviat a la Header és correcte i valid
utilitzant els serveis que proporciona Keycloak.

Siel fokenes valid Spring Security procedira a obtenir les credencials contingudes al token.

Document d’Arquitectura Especificacio Arquitectura Pagina 84 de 116

JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

e En cas contrari, retornara un error generic: 401. Unauthorized

e Sies dona per valida la credencial associada al token, i disposa del permis correcte, permetra executar la
peticid. En la resposta, adjuntara un nou token de refresc, per evitar que 'original caduqui després d’enviar-lo
moltes vegades amb el servidor.

e Encas contrari, retornara un error generic 407 . Unauthorized

Logicament, si tot el negociat de I'autoritzacié esta basat en un intercanvi de tokens, en algun moment cal definir el
punt d’entrada de I'usuari, i generacié del primer token.

Les aplicacions hauran de ser configurades per generar un primer token una vegada I'usuari ha superat el repte de
GICAR, utilitzant les capgaleres GICAR. A partir de la informacié de I'usuari que proporcioni GICAR, hauran d’obtenir
la informacié de l'usuari i amb aquesta sol-licitar a Keycloak la creacié del token JWT per I'usuari amb aquesta
informacid. La creacié d’aquest token proporcionara com a resultat tant el token com un token de refresc per poder
demanar un refresc del token quan estigui proper a caducar.

Al ser Keycloak qui proporciona els tokens, també es I'encarregat de fer les validacions. La configuracié de Spring
Security permet localitzar els serveis de Keycloak adients per tal que pugui fer aquestes tasques de validacié JWKS.

lauth/realms/ejcat/protocol/openid-connect/token

/<usuaris>/apifuserinfo (grant_type=client_credentials)

(user_id) (userclaims) N
. (9] OAK «——

777777777777 -» Jus-portal-service @~ -

User claims i JWT + refresh token JWKS
Zen(:(BEd'J"\/e\"cTt+ fresh [/modulXXX/api/... + verification
| 4 ookies| + refresh) Auth Bearer+ JWT
g

Jus-usuaris-service Microfrontend angular <~~~ Jus-modulXXX-service

200 OK /
401 unauthorized

5.3.5.3 Refresh token

La sol-licitud per refrescar el token es realitza des de frontend, en cas de detectar que l'access_token en curs es troba
proper a caducar. El servei consisteix en refrescar aquest token periddicament, enlloc de fer-ho per defecte en cada
invocacio al backend.

Des del frontend s'emmagatzema el refresh_token rebut al autenticar-se l'usuari amb el sistema.

Un servei del A-Component que realitzi la funcié de portal permetra intercanviar aquest refresh_token per un
access_token renovat i vigent. Aquest intercanvi es fara en un servei implementat al Keycloak, de tipus
grant_type=refresh_token.

/portal/api/refresh lauth/realms/ejcat/protocol/openid-connect/token
(refresh token) (grant_type=refresh_token)

i (refresh token)
i K+ LOAK

Jus-portal-service <«
\ JWT + refresh token

sendRedirect +
Cookies (JWT + refresh)

Document d’Arquitectura Especificacio Arquitectura Pagina 85 de 116
JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

5.3.5.4 Canvi de context entre microfrontends

A aquest escenari es desitja, des de un microfronted Canigo 3.6.5 + Angular anar cap a un microfrontend amb la
mateixa tecnologia i que utilitzi tokens JWT que siguin valids pels dos serveis.

Els projectes amb la arquitectura Canigo 3.6.5 + Angular , han d'utilizar la mateixa tecnologia. Aixi, les serveis de
backend utilizen Spring security configurat per adrecgar les validacions de tokens JWT contra un endpoint OIDC del
nostre provider de seguretat OAuth2: el Keycloak.

Per tant, no cal fer cap transformacié de tokens, perd si proporcionar informacié al microfrontend origen sobre a quin
microfrontend desti s'ha de dirigir.

El modul desti haura d'oferir un servei REST que rebra la llista de parametres per preparar I'entrada al seu context, i el
token JWT per extreure les dades de I'usuari connectat.

La resposta sera una estructura comuna, amb la informacié de la URL desti del seu microfrontend (aquesta informacio
només la coneix ell, i és una propietat que tindra definida en el seu ConfigMap o application.yml) i els parametres
necessaris per entrar-hi (en cas de tenir-ne). S’ha de considerar que la informacié de I'usuari connectat es troba al
token JWT i que s’ha d’enviar a la capcgalera Authoritzation per securitzar la crida al servei i per tant, no cal que estigui
definit com parametre d’entrada i el token s’ha de poder validar i processar pel backend desti.

Aixi el modul desti que permet que altre modul realitzi un canvi de context sobre ell (es a dir que defineix un
mecanisme per ser obert des de un altre microfrontend) ha de implementar:

Servei REST:

- Endpoint url del servei Rest de canvi de context al desti. Per exemple: https://.../jus-modulDestiXXX-
service/api/XX/cc/entradaXXX

- Com a minim una capgalera requerida Authoritzation amb el token JWT.,

- Cos: Format propi del cos segons les necessitats del desti per tenir la informacié necessaria per tal
de poder ser obert. Al seu backend s'implementa com una classe propia del model.

- Resposta: Com resultat s'utilitza una resposta estandard que conté la informacié necessaria per tal
que el modul origen faci la crida cap al modul desti. Es tracta de la seglient classe de la llibreria

jus-canigo36-cloud-ib:
cat.gencat.justicia.common.model.cc.GenericCanviContextResponseViewModel

{

“routeTo”: “xxx”,
“params”:

{

“paraml”: “xxx”,

Amb aquesta informacio el frontend origen pot realitzar el seu canvi de context per obrir el microfrontend desti.

Document d’Arquitectura Especificacio Arquitectura Pagina 86 de 116
JUS Canigo3.6.5_CloudNative.doc

https://.../jus-modulDestiXXX-service/api/XX/cc/entradaXXX
https://.../jus-modulDestiXXX-service/api/XX/cc/entradaXXX

W Generalitat de Catalunya T
WY Departament de Justicia

@ (2) route _ q
Frontend origen 7 Frontehd desti

| Header: token JWT :
i Body JSON: |
i i
1 I
1 I
1 I
1 I

(parametres per preparar el cc)

Validacié token JWT Q OAK
Backend desti i

{

“

ResponselSON: GenericCanviContextResponseViewModel

“routeTo”: “xxx”,
params”: {
“paraml”: “valorl”,

5.3.6.5 Canvide context de microfrontend cap a intranet del sistema EjCat.

Aquest escenari és més complex, doncs entren en funcionament les diferents arquitectures que tenim en els projectes

intranet d'EJCAT

Arquitectura Funcionament de la seguretat

Canigo 1.4 Cookie administrada per Filters de la shared-library SSO.jar
Canigo 3.1 JSF

Canigd 3.2 REST Token JWT administrat pel modul JusTokenHandler-ear

Canigo 3.6 REST Token JWT validat via JWKS contra endpoint Oauth? de KeyCloak

Els canvis de context entre modduls intranet d'EJCAT, on es combinen diferents arquitectures, els gestiona el modul
Portal implementat en Canigd 1.4 (d’aqui endavant : "POR-Canigo1.4").

Concretament, aquest modul ofereix un endpoint dins el seu MVC d'Struts per rebre peticions de canvis de context

entre moduls, i executar aquest canvi de modul:
https://.../portal/AppJdava/canviContext.do?reqgCode=canviContextSSO

Abans de fer la crida al POR-Canigo1.4, perd, cada modul origen Canigd 3.4 + Angular 9 haura d'oferir un servei REST
per preparar els parametres del canvi de context.

Servei REST:

- Endpoint url del servei Rest de canvi de context a l'origen. Per exemple https://.../jus-
modulOrigenXXX-service/api/XX/cc/preparaEntradaXXX

- Com a minim una capgalera requerida Authoritzation amb el token JWT.,

- Cos: Format propi del cos segons amb la informacié necessaria per tal de poder preparar el canvi de
context. Al backend de I'origen s’implementa com un DTO.

- Resposta: Com resultat s'utilitza una resposta estandard que conté la informacio necessaria per tal
que el modul origen faci la crida cap al modul desti iniciant el canvi de context. Es tracta de la
seglient classe de la llibreria jus-canigo36-cloud-lib:
cat.gencat.justicia.common.model.cc.CanviContextResponseModel
{ "paramsCC": "..."

}
Document d’Arquitectura Especificacio Arquitectura Pagina 87 de 116

JUS Canigo3.6.5_CloudNative.doc

‘T

W Generalitat de Catalunya
WY Departament de Justicia

Addicionalment, el modul POR-Canigo1.4 necessita rebre també un token que NO sigui JWT (doncs aquest modul no
treballa amb aquest format) si no amb un format diferent que va ser definit al seu moment com Token de Canvi de
Context (o TokenCC).

Aquest token és comu, i per tant s’ha d’implementar un servei al modul Portal (li direm "POR-Cloud" en aquesta
endavant) que preparara finalment tota la informacié per la crida de canvi de context.
A més, la informacié ha d'estar codificada en un format concret, que el POR-Canigo1.4 pugui entendre.

Servei REST:
- Endpoint url. Per exemple https://.../jus-por-cloud-service/api/XX/cc/tokenCC
- Com a minim una capgalera requerida Authoritzation amb el token JWT.
- Cos: Dades del canvi de context que es vol realitzar. S’ha d'utilitzar el format definit per la seglent

classe de la llibreria jus-canigo36-cloud-lib:
cat.gencat.justicia.common.model.cc.TokenCCRequest
{

"paramsCC": "...",

"urlRetorn”: "..."

}

= paramsCC: preparats pel servei REST anterior del modul origen

= urlRetorn: route de frontend en cas que s'hagi de poder tornar del modul desti al modul
origen de nou. Aquesta informacio és una propietat que coneix el frontend.

- Resposta: Com resultat s'utilitza una resposta estandard que conté la informacié necessaria per tal
que el modul origen faci la crida cap al POR-Canigo1.4. Es tracta de la seglent classe de la

llibreria jus-canigo36-cloud-lib:
cat.gencat.justicia.common.model.cc.TokenCCResponse
{

"tokenCC": "...",

"urlCCc": "...",

"paramsCC": "..."

}

= tokenCC: és el token que POR-Canigo1.4 necessita per determinar qui esta demanant el
canvi de context

= urlCC: aquesta és l'adreca del servlet de POR-Canigo1.4 que hem indicat anteriorment que
s'ocupa dels canvis de context on mesclem arquitectures

= paramsCC: és possible que el POR-Cloud hagi d'incloure algun parametre addicional de
forma general per a tots els moduls MJ. Per aquest motiu, el servei retorna de nou aquest
parametre que ja havia rebut d'entrada.

[PLROSTuCE . Weblogic
! form params: !
| paramscC v, | @smurs
i_"tokenCC": "ABCDE...", | Modul Struts (CAN 1.4)
@ hl STRUTS (4) sendRedirect t,nJSr
’ 3 L 4
Frontend origen POR-Canigo 1.4 Madul JSF (CAN 3.1)

(1) POST /api/cc/preparakXX__ ___
| Header: token JW 1
| Body JSON:]
H i
v |
1]
H i
H i
1 i

(parametres per preparar el cc)

}

Backend origen

Validacié token JWT

Document d’Arquitectura

Header: token JWT: TokenCCRequest

Body JSON:
{
“paramsCC”: "xyz123",

- OAK +

ResponselSON: TokenCCResponse

{
“tokenCC”: “ABCDE...",
“paramsCC”: “xyz1234abc..."”

Validacié token JWT

Especificacio Arquitectura
JUS Canigo3.6.5_CloudNative.doc

“urlCC”: “.../portal/Applava/canviContext.do?reqCode=canviContextSSO"

Frontend desti (CAN 3.2)

Pagina 88 de 116

W Generalitat de Catalunya T
WY Departament de Justicia

5.3.5.6 Canvi de context intranet del sistema EjCat cap a microfrontend

L'escenari més habitual d'aquest tipus de canvi de context sera el de retorn.

Es a dir, un microfrontend fa un canvi de context a una aplicacid intranet d'EJCAT amb diferent arquitectura
(Canigo1.4+Struts, Canigo3.1+JSF, Canigo3.2+REST), i després s'ha de tornar al microfrontend.

No es contempla, funcionalment, que una aplicacié intranet EJCAT per si mateixa necessiti fer un canvi de context cap
a un microfrontend.

Partim de la base que l'aplicacié origen (intranet EJCAT) ha obtingut un TokenCC, i s'ha fet un redirect al
microfrontend Angular.

El primer que necessita fer el modul desti es traduir aquest TokenCC (que es un format comu a totes les arquitectures
intranet EJCAT) en un parell de tokens JWT valids (access token + refresh token) i especifics per la seva arquitectura

Per aquest intercanvi, el mddul POR-Cloud oferira un servei REST de traduccié de tokens.

Aquest servei rebra el tokenCC, extraura la informacié de ['usuari (els seus claims), i invocara al proveidor d’identitats
per generar els tokens JWT valids per invocar al backend desti MJ.

Servei REST:
- Endpoint url. Per exemple https://.../jus-por-cloud-service/api/XX/cc/validaTokenCC
- No es possible enviar un token JWT, encara no tenim un i es el resultat d’aquesta crida.
- Cos: El tokenCC rebut com a fragment. S’ha d'utilitzar el format definit per la seglient classe de la

llibreria jus-canigo36-cloud-ib:
cat.gencat.justicia.common.model.cc.ValidaTokenCCRequest
{

"validaTokenCC": "<token CC>"
}

- Resposta: Com resultat s'utilitza una resposta estandard que conté els tokens. El modul portal-cloud
s’ha d’encarregar d’obtenir aquests tokens del proveidor d’identitats. El resultat té el format de

la seglient classe de la llibreria jus-canigo36-cloud-lib:
cat.gencat.justicia.common.model.cc.AccessRefreshTokenResponse
{

"accessToken": "<token JWT>",

"refreshToken": "<token JWT>"

}

Web|0g|c | Header: token JWT: ValidaTokenCCRequest
1 Body JSON:
R

(1) sendRedirect | “validaTokenCC"; “<token CC>",
'

STRUTS (amb url-fragment) :__] ______________________________

POR-Canigo 1.4 " Frontefd desti <

H ResponselSON: AccessRefreshTokenResponse

'

i 1
(4) Crides a serveis | “accessToken”: “<token JWT>", !
amb accessToken | “refreshToken": “<token JWT>.”

¥ "

Backend desti PDR-CI::ud

(3) POST authi/realms/ejcat/protocoliopenid-connect/token
(grant_type=client_credentials)
(userclaims)

OAK <«

oy
Validacié token JWT

Access token + refreshtoken

Document d’Arquitectura Especificacio Arquitectura Pagina 89 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

2.3.5.7 Canvi de context entre microfrontends i altres sistemes

Aquest cas d'Us de moment no es contempla: que es pugui fer canvis de context entre, per exemple aplicacions
Extranet del sistema EjCat, i entraria en un segon abast de requeriments en cas de necessitar aguesta funcionalitat.

Document d’Arquitectura Especificacio Arquitectura Pagina 90 de 116
JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

5.3.6 Definicié dels Controllers i els métodes de I’API RESTful

Totes les classes que siguin contrelles s'anotaran amb @RestController i poden extendre de la seglent classe
abstracta inclosa en la llibreria justicia-canigo3.4-cloud-lib, que ofereix un tractament comu de temes com per exemple
la paginacié amb Spring Data:

cat.gencat.justicia.common.controller.JusticiaMainController

Cal definir en la configuracié de l'aplicacio el context path dels serveis que s'exposaran en la nostra API. Aquest path
ha de tenir versionat obligatori en la seva nomenclatura.
server:

servlet:
context-path: /api/vl

Amb la configuracio anterior, els nostres serveis estaran accessibles a partir de:

https://NOM MODUL.namespace.domini/api/vl/...

Tal com s’explica a la guia [CU_ARQ022_Gestio_d_excepcions] de gestié d’excepcions cada aplicacié ha
d’'implementar una classe anotada amb @ControllerAdvice a la que gestionar les excepcions propies de cada
aplicacio. Es pot extendre la classe de la llibreria justicia-canigo3.4-cloud-lib si és aplicable el tractament per defecte

d’algunes de les excepcions.
cat.gencat.justicia.common.controller.JusticiaResponseEntityExceptionHandler

Aquesta classe s'ocupa de convertir les excepcions en missatges d'error unificats, segons la internacionalitzacid (i18n)
del modul, i retornar l'estructura d'error unificada (codi i descripcié de lerror). En el nostre cas, utilitzem el
seglietnDTO de Canigé:

cat.gencat.ctti.canigo.arch.web.rs.response.ResponseError

Document d’Arquitectura Especificacio Arquitectura Pagina 91 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

9.3.7 Exposicié de ’API REST amb Swagger

Swagger 2 és un framework de disseny i documentacié d’API's de serveis REST. Permet generar de forma senzilla i
intuitiva la documentacié dels serveis publicats en cada modul : mostrant model de dades d’entrada i sortida, les
capcaleres, codis de retorn, etc...

El seglient T-Component comu d’Arquitectura per configurar Swagger 2. Es tracta d’'una classe amb les anotacions
@Configuration i @EnableSwagger? que es troba a la llibreria comuna jus-canigo36-cloud-lib

cat.gencat.justicia.common.configuration.JusticiaSwaggerConfig

Un cop arrencat el projecte amb Spring Boot, es pot consultar la documentacié generada de I'API en el seglient
enapoint.

.../swagger-ui.html
També es pot recollir en format JSON, per importar-la en eines com Api Manager:

.../v2/api-docs

Document d’Arquitectura Especificacio Arquitectura Pagina 92 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya
WY Departament de Justicia

5.3.8 Stack de logging distribuit

Al desplegar les nostres aplicacions en contenidors, resulta dificil gestionar la consulta dels logs que aquests

generen, ja que aquesta informacié es volatil i lligada a la vida del propi contenidor.

Per aquest motiu, disposarem de I'stack EFK (ElasticSearch+FluentD+Kibana) per consultar els logs.

Els serveis han d’assegurar que escriuen els seus logs per sortida estandard, en format JSON.

Un agent de FluentD recull els logs de cada contenidor, i els indexa en una base de dades ElasticSearch,
optimitzada per a consultes rapides de text.

Finalment, s’habilita una eina web Kibana per consultar aquests logs, segons diferents parametres de filtre
(aplicacio, contenidor, nivell de traca, timestamp,...)

log
collector

POD

log
collector

&

POD

log
% collector

POD

’Fluentd]

log
aggregation
-

’T‘Iuentd]

’T‘Iuentd T

PersistentVolumeClaim

elasticsearch

indexing

'Y

kibana

Per altre banda, per fer la tracabilitat d’'una operacid que pot passar per diferents serveis, es configurara un
agregador addicional de logs anomenat Jaeger, que posteriorment permet fer visualitzacions agrupades de logs
pertanyents a una mateixa invocacio, a través d’identificadors interns basats en Spring Sleuth.

Document d’Arquitectura

Especificacio Arquitectura

JUS Canigo3.6.5_CloudNative.doc

Pagina 93 de 116

W Generalitat de Catalunya T
WY Departament de Justicia

5.3.9 Vista estatica de la capa de distribucié REST

Al segiient diagrama de classes podem veure els diferents elements que intervenen en aquesta capa:

cmp logical view — Distribution layer REST

“@SpringApplication”
“@ComponentScan”

spring-boot aesta spring-security jus-canigo34-cloud-lib
“@Configuration”
WebSecurityConfiguration use JusticiaAuthenticationEntryPoint
“ContextNegotiatingViewResolvers” ¥ create
~u{ ObjectMappir SpringApplication
WebSecurityConfigurerAdapter
use*l lusticiaGrantedAuthoritiesExtractor |
“@Configuration” |
“ urity”
A RecursWe onfig I
create component-scan
e D
jus-canigo34-clofid-lib _— T —
! =
===
=R
serialize

“@Configuration” “@Configuration” “@ControllerAdvice” “@ControllerAdvice”
JusticiaAppConfig 4 JusticiaSwaggerConfig ici i i i i
| JusticiaMainController |

i

“@RestController” L.
RecursController [

0..*

use u —~ use
_— ~—

P —

“Serializable”
] e

En fons blanc sdn els components ubicats en llibreries incloses amb Canigé 3:
e Spring-boot: incorpora I'aplicacié Spring, els mecanismes d’autoconfiguracié de Spring boot i una
configuracié basica del processador dels missatges d’entrada i sortida a format JSON (ObjectMapper)
e Spring-security: incorpora tota la gestio de la seguretat, el proveidor d’autenticacio i autoritzacio.
En fons groc marquem els T-Components fets per Arquitectura. Pel cas de REST, la llibreria és;
e jus-canigo36-cloud-lib: diferents T-Components comuns per la capa de distribucio REST dels moduls.

Els REST Controllers, son els objectes que acaben formant la definicié de la nostra API de serveis, amb les seves
diferents operacions: indicant el format d’adreca (URI), la ubicacié dels parametres, els métodes acceptats, i el format
de resposta de cada un (JSON principalment).

Els @RestControllers enllacen amb la capa de negoci a través dels Business Components (annotacidé @Service), que
actuen com a Service Facade de comunicacié amb altres moduls, o d’accés a la base de dades.

Els objectes retornats per aquests BC sempre seran de tipus Domain Model. Els View Model Adapters s’ocupen de
transformar-los al model definit en la nostra API REST, i els identifiqguem com View Model objects.

Els Controllers s'ocuparan també del tractament dels codis de retorn HTTP adients segons el resultat de 'operacio.
Els moduls importaran la configuracié de Swagger a efectes de documentacié de la seva API REST.

Un cop inclos el context de configuracid, I'API de REST sera publicada també en format Swagger 2, i aquest podra ser
editat pels diferents editors de Swagger existents.

Document d’Arquitectura Especificacio Arquitectura Pagina 94 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

5.3.10 Comunicacid entre la capa de distribucié REST i la capa de negoci

La capa REST no fara cap invocacio directa a la base de dades o a altres serveis.

Aquesta responsabilitat es delegara sempre a la capa de negoci de I'aplicacio, en els Components que tenen

I'annotacid @Service:

org.springframework.stereotype.Service;

Per tant, els REST Controllers Unicament contacten amb els Components injectats amb Spring directament emprant

I'anotacio @Autowired:

org.springframework.beans.factory.annotation.Autowired

| amb els View Model Adapters faran una transformacié de les dades rebudes o enviades a la capa de negoci

(DomainModel), per adaptar-ho al model de dades dels serveis REST.

Exemple d’'un Controlador REST de serveis per un recurs de Paisos, amb enllag al seu Components corresponent, i

tractament de I'adapter:

package cat.gencat.justicia.exemple.project.controller;

import org.springframework.
import org.springframework.
import org.springframework.
import org.springframework.
import cat.gencat.justicia.
import cat.gencat.justicia.
import cat.gencat.justicia.

import cat.gencat.justicia.

@RestController
@RequestMapping({"/pais"})

beans.factory.annotation.Autowired;
web.bind.annotation.RestController;
web.bind.annotation.RequestMapping;
web.bind.annotation.ResponseBody;
exemple.model.view.PaisViewModel;
exemple.model.view.adapter.PaisAdapter;
exemple.model.domain.PaisDomainModel;

exemple.project.service.impl.PaisService;

public class PaisController extends JusticiaMainController {

/** pais service */

@Autowired

PaisService paisService;

@RequestMapping(value = "/traduccio/{codiIdioma}/{paisId}",
method = RequestMethod.GET,

produces =
@ResponseBody

"application/json; charset=UTF-8")

public ResponseEntity<PaisViewModel> getTraduccioPais(@PathVariable("codiIdioma") String
codiIdioma, @PathVariable("paisId") String paisId) {
PaisDomainModel domainPais = paisService.getTraduccioPais(paisId, codiIdioma);
return ResponseEntity.ok(PaisAdapter.adapt(domainPais));

i)

Document d’Arquitectura

Especificacio Arquitectura Pagina 95 de 116

JUS Canigo3.6.5_CloudNative.doc

M Generalitat de Catalunya T
WY Departament de Justicia

5.3.11 Vista d'implementacid

A continuacié es presenta un diagrama de la vista d’'implementacié enfocat només a la capa REST.
Per un costat tenim la implementacié en els projectes, i per altre, la llibreria de T-Components comu per REST:

Pkg Deployment Package Layout — Distribution Layer (REST)

src

main.java/cat.gencat.justicia.<aplicacio>.project jus-canigo34-cloud-lib
configuration cat.gencat.justicia.common.configuration
controller cat.gencat.justicia.common.controller
cat.gencat.justicia.common.securi
model g] R

adapter

.main.resources

Document d’Arquitectura Especificacio Arquitectura Pagina 96 de 116
JUS Canigo3.6.5_CloudNative.doc

Generalitat de Catalunya
Departament de Justicia

5.4 CAPA DE NEGOCI

9.4.1

Nomenclatura i responsabilitats

Les responsabilitats dels components d’aquesta capa REST son:

Objecte Responsabilitats Nomenclatura
Son els objectes cridats pels controllers i que es | xxxController.java
responsabilitzen de realitzar I'execucié de logica de negoci. Si
Servei necessiten accedir a bases de dades ho demanen a la capa | extends
(@Senvice) d’accés a dades
JusticiaMainService.java
Deleguen als data access objects les crides d’accés a dades i a
altres serveis I'execucid de logica de negoci d’aquells serveis.
Representacié d’'un objecte que representa el format d’'un
Data Transfer conjunt d'informacio, un POJO.
Object (DTO) Aquesta informacié s'intercanvia entre els Serveis i altres serveis
0 entre els serveis i els controllers.
Data Access | Son els objectes responsabilitzats del accés a les dades. Son | JusticiaMongoGenericDAQ.java
Object (DAQ) executats des dels serveis.
A un model de base de dades documental, un document es
I'element d’accés a la informacio.
Document
A MongoDB la informacié s’emmagatzema en col-leccions de
@Document

documents que poden ser polimorfics. Un Document pot
contenir altres documents com part d’ell.

Document d’Arquitectura

Especificacio Arquitectura
JUS Canigo3.6.5_CloudNative.doc

Pagina 97 de 116

W Generalitat de Catalunya T
WY Departament de Justicia

5.4.2 Vista estatica

class Static View - Negoci /

“interface”
SampleService

+ sampleUseCace{DomainMode). DomsinModel

| extends

| SampleServicelmpl

“interface” ~SampDAD: SampleDAC “Interface”
SamplaExternalDAQ |,J . 0. 2040 . o SampleDAO
A b - + sampleUseCase|DomainModel|: DomainMode! N A
, extands ! use
- i extends
MockDAOImpl ;
|
extends : | SampleDAOIMp |

use ! 0..*

SampleExDAOImp!

- cannectar. Connector

jus-canigo34-cloud-lib spring-data
+ obtener{Seriaizabie, DomainModel | Doma rode! i
- i \Y] : z
H i H use
. H | ExtModelAdapter |] : JusMongoGenericDAD MongoTemplate
0. : | T Some o HER DT Do EXEOTE) | ; :
winterface” i L 070, Damanblce T
Connector P use jouse
n 0.*
extends extends | N
use “@Document” extends
I WSConnector | { WSConnector } ——————){ EXtDTO | “Seralirable” ‘ ®Document
: use A

El negoci es modelat mitjangant la definicid de serveis de negoci. Distingirem entre la seva interficie (Service) i la
implementacié (Servicelmpl).

Els parametres dels métodes de negoci poden ser
- Objecte de domini (DomainModel)
- Tipus basics o primitius Java.
Un “Service” pot invocar a altres “Services” durant I'execucié del seu métode de negoci. També pot invocar al T-

Component DAO per tal d’interaccionar amb BBDD o External DAO per interaccionar amb sistemes externs. Per
entorns de desenvolupament, pot ser interessant utilitzar “Mock Objects” quan es tinguin limitacions de connectivitat.

Document d’Arquitectura Especificacio Arquitectura Pagina 98 de 116
JUS Canigo3.6.5_CloudNative.doc

Generalitat de Catalunya
| Departament de Justicia

-- T - -Systems-

5.4.3 Vistadinamica

Dynamic View - Negoci

Reﬂlonlroller

umnl JseC NO TRANSACTION
SampleDorainMode! I !
SampleEntityl
sampleTxMethod(): SamplePomainModel TRANSLACI'ION - REQUIRED

NO TRANSACTION

SampleEntity2
SampleDomainMode!

SampleDomainModel

Cal destacar del diagrama anterior:

e Per tal de resoldre el cas d'Us, el controlador REST (RESTController) invoca a un Servicelmpl que fara dos
accions independents. Primer realitza una cerca sense englobar-la dins una transaccié per obtenir un
determinat objecte del model. Posteriorment es crida a un altre Servicelmpl que inicia una transaccié per tal
de insertar un nou objecte a base de dades

5.4.4 Vista d'implementacid

A continuacié es presenta un diagrama de la vista d’'implementacié enfocat només a la capa de Negoci.

Document d’Arquitectura Especificacio Arquitectura Pagina 99 de 116
JUS Canigo3.6.5_CloudNative.doc

M Generalitat de Catalunya T
WY Departament de Justicia

Pkg Deployment Package Layout — Business Layer

src

main.java/cat.gencat.justicia.<aplicacio>.project jus-canigo34-cloud-lib

madel cat.gencat justicia.common.mongodb

extDTO
adapter

connector

mongodb

domain

template.dao

service

impl

.main.resources

En el package model.extdto estaran els objectes de domini de serveis externs modelats com DTO’s, dins el package
servcice trobarem els components de negoci necessaris per tal d'implementar els casos d’Us especificats.
Les entitats de comunicacid amb la base de dades (Document) estaran al package mongodb

Document d’Arquitectura Especificacio Arquitectura Pagina 100 de 116
JUS Canigo3.6.5_CloudNative.doc

Generalitat de Catalunya T
Departament de Justicia

5.5 CAPA D’INTEGRACIO

5.5.1 Nomenclaturai

responsabilitats

Les responsabilitats dels components d’aquesta capa REST son:

Objecte Responsabilitats Nomenclatura
KafkaStreams Definicié dels elements de comunicacié amb Kafka xxxKafkaStreams.java
Component responsable de romandre a I'espera de I'arribada | xxxKafkaStreams.java
d’'un missatge pels elements de comunicacid definits i de
KafkaListener gestionar i processar el missatge .
Es responsable de la gestié dels errors.
Component responsable de I'enviament de missatges utilitzant | xxxKafkaSender.java
KafkaSender e
els elements de comunicacié definits.
Spring boot aplication - . . xxxApplication.java
El nostre model REST sera implementat en tecnologia Spring
(@SpringBootApplication) boot. Indica el punt inicial de la aplicacio.

5.5.2 Vista estatica

La vista estatica corresponent a la vista logica d’integracio és:

Document d’Arquitectura

Especificacio Arquitectura
JUS Canigo3.6.5_CloudNative.doc

Pagina 101 de 116

W Generalitat de Catalunya T
WY Departament de Justicia

I
. . .z
class Static View - Integracid
“@SpringApplication”
“@ComponentScan”
Application
spring-boot create jus-canigo34-cloud-lib
“@Configuration” use
“@EnableBinding” = [---mtteeeem3 JusticiakafkaStreams <—————~f-‘
StreamsConfig '
SpringApplication D,l/,."
- use 7 JusticiaKafkaMessage
M use
o1 “ac v extends
1 omponen: o) "
__,‘./> SampleKafkaListener ——’ JusticiaKafkaListener
component-scan H
? % i use /i\
: !
ﬂ ----- receive - ——
DomainModel Kafka
7y <ff SEnd -
R | use | ;
. . extends use !
@S.ENICE JusticiakafkaSender -
‘ SampleServiceKafkaSender
\\‘ ! use :
I‘\‘ V‘\ . 0.L* S —
N . use
Call (REST) ~ . {] _ Call (REST) “@RestController” extends . JusticiaMainControll
" = RecursController usticialviaintontrofier
YA ot
Call (REST) e 4“[5"‘15 JusticiaMainController
S ConsumerExternalServeRESTServicelmpl
Sistema Extern |
A Lo0L*
) 8] call(res) P
[integration service” “~—| ~“" """/ @Serw.ce) extends > JusticiaMainController
Call {xxx) SampleRest2xxx ConsumerExternalServeiNoRESTServicelmpl

A la capa d'integracid, s’explica els mecanismes pels cuals els sistemes externs poden accedir als serveis interns.
Existeixen 2 tipus principals d’integracio cap als serveis de negoci:
e Asincrona: els serveis poden utilitzar els T-Components (JusticiaKafkaListener) de la llibreria jus-canigo36-
cloud-ib per rebre missatges de Kafka.
e Sincrona: per tal que serveis externs puguin demanar I'execucié de serveis de negoci interns s’han de
acomplir diferents condicions:
o Els serveis interns poden ser accedits de manera directa o via Api Manager segons les diferents
opcions exposades al cas d’us CU_ARQ026 Accés a serveis negoci.
o Elsistema extern ha de consumir el servei utilitzant el protocol REST.

Per tal que des de els serveis interns es pugin consumir serveis de sistemes externs temin els seglients tipus principals
d’integracio:
e Asincrona: els serveis poden utilitzar els T-Components (JusticiaKafkaSender) de la llibreria jus-canigo36-
cloud-lib per enviar missatges cap a Kafka.
e Sincrona; els protocol de comunicacions soportat pels serveis intenrs es el REST per aixd hem de distingir:
o Servei extern utilitza protocol REST: els serveis poden executar directament aquest servei.
o Servei extern que no utilitza protocol REST: a aquest cas, s’ha d'utilitzar un mecanisme de traduccio
que sigui responsable de rebre la crida REST que genera el servei intern (Integration Service),
traduir de protocol REST al protocol del servei desti i de realitzar I'execucié al protocol del servei

desti. La implementacié d’aquest servei d'integracié sera responsabilitat del servei que té la
necessitat de realitzar I'execucié remota.

Document d’Arquitectura Especificacio Arquitectura Pagina 102 de 116
JUS Canigo3.6.5_CloudNative.doc

[Generalitat de Catalunya 4 M .
Departament de Justicia T Systems

5.5.3 Vista dinamica

A tots els casos, el client o el desti de la comunicacié a la capa d'integracid no sera la capa de presentacio, sind un
sistema extern o eina d’intercanvi de missatges.

Dynamic View — Rebre missatge Kafka /
Kafka : - - -

| | |
| I I
| I I
| KafkaMessage | |

1
tractarKafkaMessage(message: lusticiaKafkaMessage, headers:Map)

sampleMethod(dm:SampleDomainModel)

Quan el sistema rep un missatge des de Kafka i existeix un Kafkalistener esperant la seva arribada, el missatge es
processat pel T-Component JusticiaKafkaListener i enviat cap a SampleKafkaListener que s’encarrega de realitzar les
tasques de negoci necessaries en relacio al messatge rebut.

Dynamic View — Enviar missatge Kafka /
- - - Kafka
E enviarSampIeMsssage(String:msssa'Ige) é é
sendMessags(strsams:JusticiaKafkaStreame‘,,' fkaMessage:Justici Nessage, headers:Map) :
I KafkaMessage _i

Quan des de la logica de negoci apareix la necessitat de realitzar una comunicacié asincrona mitjancant un missatge
Kafka, el servei de negoci delega aquesta tasca cap al servei d’enviament de missatges a Kafka que ho realitza
utilitzant les funcionalitats del T-Component JusticiaKafkaSender.

Document d’Arquitectura Especificacio Arquitectura Pagina 103 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

Dynamic View — Servei intern des de Sistema Extern - Internet

“Service”
SampleService

ApiManager

Sistema Extern RestController
|

|

| | |
1 I I
I | |
| | |
o | I
| |
| |

! =

demand token (grant_type=client_credentials)

JWT Token

call to external APl (dm:SampleDomainModel;

call internal API {dm:SampleDomainModel)

sampleMethod(dm:SampleDomainModel):

ResponseDomainModel
response (dm:ResponseDomainModel) < o

< 1

i

|

|

|

|

1

response (dm:ResponseDomainModel) «

-

Quan un sistema extern necessita consumir un servei intern des d’Internet, primer de tot ha d’obtenir un token JWT
que ho identifiqui i després ha de fer la crida mitjangant I'API exposada pel APl Manager. L’API Manager realitza la
subsegUent crida cap al Controler que gestiona I’API. El controller gestiona aquesta crida i executa la ldgica de negoci
que sigui adient i torna la resposta cap a I'’API Manager. Per ultim, I'’AP| Manager retorna la resposta cap al sistema
extern.

Dynamic View — Servei intern des de Sistema Extern - Intranet

@ “Service”
Identity Provider SampleService

Sistema Extern RestController

|
|
|
|
—

]
| |
| |
| 1
| i
| i
| i
| i

@ 1
i
i

o

demand token (sistema extern credential)

JWT Token

call internal API (dm:SampleDomainModel)

ResponseDomainModel
response (dm:ResponseDomainModel) < o
i
i
i
|
|
|
|

B

Quan un sistema extern necessita consumir un servei intern des de I'Intranet, primer de tot ha d’obtenir un token JWT
que ho identifiqui de I'ldentity Provider i després ha de fer la crida cap al Controler que gestiona I'’API. El controller
gestiona aquesta crida i executa la ldgica de negoci que sigui adient i torna la resposta cap al sistema extern.

Document d’Arquitectura Especificacio Arquitectura Pagina 104 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya T
WY Departament de Justicia

Dynamic View — Crida Servei REST extern

“Service”
SampleService

Sistema Extern

i
i
REST call (dm:SampleDomainModel) L

RESTr di i del)
<

Per realitzar crides cap a serveis REST de sistemes externs, la execucid es realitza directament des de un servei de
negoci encarregat d’aquesta tasca.

Dynamic View — Crida Servei No REST extern /

“Service” {]
. “integration service”
SampleService SampleRest200

Sistema Extern
I

I
i
REST call (dm:SampleDomainModel) }

NO REST eall (dm:SampleDomainModel)

NO REST response (dm:ResponseDomainModel)
Pt .

REST response (dm:Response

Si el servei extern al que s’ha de cridar no utilitza el protocol REST, s’ha d'utilitzar un servei d’integracié al que es
cridat pel servei de negoci utilitzant el protocol REST de manera que el servei d'integracié es responabilitza de fer les
traduccions necessaries i la crida cap al servei del sistema extern amb el seu protocol. Quan rebre resposta, el servei
d’integracio s’encarrega de que el servei de negoci rebi la resposta amb protocol REST.

Document d’Arquitectura Especificacio Arquitectura Pagina 105 de 116
JUS Canigo3.6.5_CloudNative.doc

M Generalitat de Catalunya
WY Departament de Justicia

9.5.4 Vistad'implementacié

A continuacié es presenta un diagrama de la vista d’implementacié enfocat només a la capa d'integracio.

Pkg Deployment Package Layout — Business Layer

src

main.java/cat.gencat.justicia.<aplicacio>.project

configuration
controller
model

service

impl

kafka

model

.main.resources

jus-canigo34-cloud-lib

cat.gencat.justicia.common.kafka

cat.gencat.justicia.common.kafka.model

Al package kafka s'ubicaran les classes especifiques per

les comunicacions amb Kafka. Per la resta de

comunicacions els controllers aniran al package controller i els services al package service.

Document d’Arquitectura

Especificacio Arquitectura

Pagina 106 de 116

JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

6 DECISIONS D’ARQUITECTURA

6.1 DECISIONS ARQUITECTONIQUES

6.1.1 Plataforma de contenidors

Aligual que els sistemes de virtualitzacié tradicionals, els contenidors requereixen d’'un sistema de gestié sobre el que
executar els elements virtualitats. Com plataforma gestora dels contenidors, es va escollir Red Hat® OpenShift® és
una plataforma de contenidors Kubernetes empresarial que ofereix el CPD corporatiu de referéncia pel departament
al moment que es va definir aquesta arquitectura i per tant la que s’ha d’utilitzar per part dels desenvolupaments.
Kubernetes es pot considerar el gestor de contenidors estandard de facto a la industria al mateix moment.

6.1.2 Dades compartits entre serveis vs Dades propetat d’un Unic servei

Un dels principals objectius de I'arquitectura és reduir I'acoblament entre els serveis.

El fet de tenir dades compartits a la base de dades implica diferents parts del sistema tenen accés directe a la
informacié compartida. També significa que canvis al model de les dades compartides podem implicar afectacions a
les parts del sistema que accedeixen a aquests dades.

Per reduir I'acoblament a nivell de dades entre els diferents serveis, a aquesta arquitectura les dades seran
propietaries d’un Unic servei i es aquest servei el responsable del manteniment d’aquestes dades. Si un altre servei
necessita aquelles dades les tindra que demanar al servei propietari.

Aquesta decisio te implicacions importants fins al punt que el disseny funcional ha de dividir el negoci de manera que
els dominis de negoci de cada servei puguin estar desacoblats i de manera que el disseny ha de evitar que una dada
de negoci sigui propietaria de més d’'un servei. Una metodologia que facilita aquest tipus de disseny és el Disseny
Orientat al Domini o DDD (https://www.domaindrivendesign.org/).

Si cal compartir dades entre serveis o creuar dades existira una BBDD de consulta on es podran crear col-leccions
amb dades de diferents serveis 0 on podran coexistir dades de diferents col-leccions per tal de poder fer creuament
de dades entre diferents negocis. Aquesta decisi6 es detalla més endavant.

6.1.3 Base de dades Relacional Oracle vs Documental MongoDB

Al moment de dissenyar aquesta arquitectura els principals sistemes del departament utilitzen una base de dades
Relacional Oracle RAC.

Els clients d’aquesta arquitectura sén aplicacions basades amb Javascript que utilitzen el framework Angular 9.
Aquests clients utilitzen models de dades en format JSON.

Com eina per tractar de reduir 'acoblament a nivell de base de dades, es va seleccionar una base de dades
Documental. Va ser escollida pels desenvolupaments MongoDB 4.2. Es una base de dades Documental i la seva
eleccié implica canviar la manera de fer els dissenys dels models de dades dels serveis.

Un des motius pel que es va seleccionar a partir de la versié 4.0 MondoDB va comencar a donar suport a transaccions
multi document. Aquest tipus de transaccions a les que multiples documents d'una o diverses colleccions de
documents s’han de poder actualitzar de manera Unica (es a dir, s’ha de garantir que o es realitzen totes les
modificacions de la transaccié o no es realitza cap d’elles).

Document d’Arquitectura Especificacio Arquitectura Pagina 107 de 116
JUS Canigo3.6.5_CloudNative.doc

https://www.domaindrivendesign.org/

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

Un altre motiu es que es va evolucionar Canigd 3.4 de manera que es van incloure els drivers de MongoDB
compatibles amb la versié 4.2 i que habiliten I'Us de les capacitats de transaccionalitat sobre multiples documents a
una unica transaccio.

MongoDB es una base de dades Documental a la que no existeix un esquema predefinit per determinar el format dels
documents d’una agrupacié de documents (anomenada col-leccid). Aquesta capacitat per tenir multiples estructures
als documents permet realitzar canvis d’estructura de manera progressiva en lloc de tenir que fer els canvis de manera
massiva com s’ha de fer a les bases de dades relacionals. Els documents s’emmagatzemen en format BSON.

A diferencia de les bases de dades relacionals, a MongoDB les relacions i les regles de consisténcia de les dades a la
base de dades no sén gestionades directament pel motor de la base de dades. Aixd dona més flexibilitat al moment
de realitzar modificacions a la base de dades. Per un altre costat, I'esfor¢ de garantir la consisténcia de les dades
recau al disseny i laimplementacio dels canvis de les dades sense suport per part de MongoDB.

Encara que la utilitzacié de BBDD MongoDB és prioritaria per als nous serveis desenvolupats, si el negoci d’'un nou
servei es considera critic aquest podria fer servir BBDD Oracle i no MongoDB. Aquesta decisié s’haura de prendre en
les fases inicials del projecte i caldra ser validada amb els responsables de la solucio al Departament.

6.1.4 BBDD de consulta

La BBDD de consulta sera una BBDD MongoDB consultable pels serveis que ho requereixin on hi haura dades de les
diferents BBDD dels serveis. Aquestes dades poden estar normalitzades o replicades i les podrem trobar com a
colleccions independents amb estructures iguals o similars que a les bases de dades dels serveis, 0 bé les podem
trobar amb altres estructures. Podrem trobar dades desnormalitzades de diferents col-leccions agrupades en una, o
també grans colleccions que permetin obtenir d’'una tacada conjunts de dades de diferents serveis en una sola
consulta.

Aquesta BBDD permetra realitzar consultes creuant diferents negocis.

6.1.5 APIManager

Aquesta decisié de disseny esta relacionada amb els casos d'is CU_ARQO001, CU_ARQ002, CU_ARQO03 i
CU_ARQO11iCU_ARQ029

Es va detectar la necessitat de un component que doni resposta a les seglients responsabilitats:
e Ser la porta d’entrada per crides de sistemes externs que necessitin executar serveis oferts des de les
aplicacions de la present arquitectura.
e Proveir d'una capa externa de seguretat
e Realitzar enrutament cap a sistemes interns

La decisi¢ final ha estat fer Us del Api Manager Corporatiu IBM Api Connect
e (Gestionat de manera transversal per una Oficina
e Contacte directe amb els seus responsables i equip de manteniment
e Totalment alineat amb normativa CTT! i els seus estandards de Qualitat i Seguretat

Document d’Arquitectura Especificacio Arquitectura Pagina 108 de 116
JUS Canigo3.6.5_CloudNative.doc

m
AU L/

Generalitat de Catalunya .. T . _ .
Departament de Justicia

6.1.6 Service Mesh

Aquesta decisi6 de disseny esta relacionada amb el cas d’is CU_ARQO11 Invocacio a altres serveis sincrons

Els diferents serveis de la arquitectura tenen necessitat d’intercanviar informacid entre ells i amb tercers. A
arquitectures tradicionals, es responsabilitat dels propis serveis la gestié dels fluxos de trafic entre serveis, el control
d’accés i la recollida de traces de I'execucié del intercanvi de la informacio. Existeixen productes que habiliten la
possibilitat d’externatlitzar dels serveis, en major o menor mesura, alguna o totes aquestes resposablitats.

La plataforma de virtualitzacié de contenidors que disposa el departament de Justicia es un Openshift de RedHat i per
tant, per raons de compatibilitat amb la plataforma i per tenir suport del fabricant, s'escull utilitzar el Service Mesh
d’Openshift per oferir respostes a aquestes necessitats.

El Service Mesh d’Openshift esta basat sobre el projecte open source lIstio. Istio permet realitzar aquestes tasques
sense modificar les aplicacions directament, amb un llenguatge de configuracid propi i es compatible amb
Kubernetes.

Istio utilitza Envoy Proxies per realitzar la instrumentalitzacié de les comunicacions. Es poden utilitzar Virtual Services
per realitzar tasques sobre la informacié obtinguda al proxy.

Document d’Arquitectura Especificacio Arquitectura Pagina 109 de 116
JUS Canigo3.6.5_CloudNative.doc

HIIN Generalitat de Catalunya S L .
MY Departament de Justicia T SyStemS

Service A Service B

discovery
configuration
certificates

discovery
configuration
certificates

Istio
control plane

6.2 AVALUACIO DE TECNOLOGIES

6.2.1 Implementacié de serveis RESTful

Per laimplementacid de la capa REST s’han considerat tres alternatives pels projectes de Justicia.

e Apache Camel (http://camel.apache.org)

o JAX-RS “Jersey” (https://jersey.java.net)

e Spring (https://spring.io/guides/gs/rest-service)

Finalment, s’ha escollit I'opcié d’Spring, per la seva compatibilitat amb els frameworks Canigd 3.4 i Swagger 2.

6.3 DECISIONS SOBRE COMPRA / DESENVOLUPAMENT /
REUTILITZACIO

El criteri general que es seguira al projecte durant les avaluacions sobre noves necessitats tecnologiques es basara en
el criteri de decisions MBR (Make-Buy-Reuse). La decisid final sempre estara consensuada entre Arquitectura i el
Departament de Justicia.

Document d’Arquitectura Especificacio Arquitectura Pagina 110 de 116
JUS Canigo3.6.5_CloudNative.doc

http://camel.apache.org/
https://jersey.java.net/
https://spring.io/guides/gs/rest-service

M Generalitat de Catalunya

WY Departament de Justicia

-Compettion

Social Bements

=Cast reduction

=Lack of capacity
=Faducs time to marlet
sInzrease quality

=Mew Product Firoduction

External
Erdiron ment

Triggers
_q_____'—__'_?

[MAKE-OR-BUY? |

=Foos inwestment
-Balanc= capabilities
=tkills shortage

shicrease responsiveness

‘T

=fogilability of Suppliers

-Puolitical Bements

«Ehill= to perform the process
‘Technical shills (support)

TEChI;CﬂDQ'_I,I' Supply Chain
b=nuf acturing Cast Ma:zg?;t-;zgt *
Processes 2
‘Technology and equipment

Support
Systams

Supplier selection
Lozt reduction activities with

i

=hality systen
“niormaion systems

-Ezonomical Bements

“Preduction L supplier -Erqir!eering changes syetem
-Ounership ofthe process cnst woduisiton . Cgllaboration with suppliers 'T'E"'!"'lg 93"_'3"1&5
wibilityte cope with v, changes cost «Delivery =Continuousimprowerment
+Quality measures *hrentory control prograrmme
Technical support

=Cozt savings -

-Capacity utilisation Parformance -g;igﬁrity

<Time to market Messures*

6.4 PUNTS PENDENTS

Document d’Arquitectura

Especificacio Arquitectura
JUS Canigo3.6.5_CloudNative.doc

Ernironmental
Bements

Pagina 111 de 116

m
AU L/

Generalitat de Catalunya T
Departament de Justicia

7 OPERACIO, ROLLOUT | GESTIO APLICACIO

En aquest capitol es consideren els aspectes de desplegament i posada en marxa (rollout), operacid i gestid de
I'aplicacio en termes dels seus efectes sobre I'arquitecturai a l'inrevés.

7.1 ROLLOUT

Cada aplicacié haura de desplegar els artefactes descrits a 5.1.2. Vista de desplegament, tant a entorns de
desenvolupament, com a entorns client.

Caldra seguir els procediments de pujada de codi i desplegaments a entorns client definides pel SIC (Servei
d’Integracio Continua https://canigo.ctti.gencat.cat/sic/)
El proveidor també ha de proporcionar al Departament els segiients documents de la fase de rollout (plantilles MQS):
e Manual d'Instal-lacié (en cas que tingui particularitats no esmentades al Manual d'Instal-lacié general del
sistema d’informacic)
e Manual d’Explotacié (en cas que tingui particularitats no esmentades al Manual d’Explotacid general del
sistema d’informacic)

7.2 OPERACIO

Consultar al Portal MQS els procediments i plantilles relacionades amb I'operacié del CPD (principalment, Manual
d’Explotacio):

e Manual d’Explotacié (MEX): només cal realitzar un d’especific per a cada servei si té particularitats no
recollides en el document general de Manual Explotacié del sistema d'informacié. Hauria de contenir els
seglents elements:

o Politica de backups
Parametres de monitoritzacio (quins servidors, quins elements)
Ubicacid dels fitxers de log que es generen
Llistat i descripcio dels processos planificats existents al sistema
Processos de manteniment (esborrats periodics de fitxers temporals, etc.)
Procediment de validacié de desplegament
Sequéncies d’aturada i arrancada del sistema

O O O O O O

7.3 GESTIO DE L’APLICACIO

La gestié de I'aplicacio es refereix a totes aquelles tasques que son necessaries pel manteniment, hotline, correccié
d’incidéncies, i realitzacio de futurs evolutius del sistema.
e Qualsevol incidéncia productiva arribara via I'eina de ticketing Remedy, per tal que I'equip desenvolupador
pugui atendre-la, i quedi registrada la posterior evolucio
e (Cal respectar el procediment de versionat de releases en entorns client, segons I'especificat a MQS
https://qualitat.solucions.gencat.cat/estandards/estandard-versions-programari/

Document d’Arquitectura Especificacio Arquitectura Pagina 112 de 116
JUS Canigo3.6.5_CloudNative.doc

https://canigo.ctti.gencat.cat/sic/
https://qualitat.solucions.gencat.cat/estandards/estandard-versions-programari/

W Generalitat de Catalunya T
WY Departament de Justicia

8 APENDIX

8.1 DOCUMENTACIO DE REFERENCIA

e CU_ARQO01_ARQO02_ARQO003_ARQ011_Seguretat

Guia dels casos d’Us relacionats amb la seguretat

e CU_ARQOQ04 -Accés acapa de distribucid REST (extensié cloud)
e CU_ARQOQ04.1 - Accés a capa de distribucio REST (guia base)
Guies dels casos d’us d’accés a la capa de distribucié REST

e CU_ARQO05_Canvi_de_Context_(backend)

Guia de canvi de context al backend.

e CU_ARQQ06_Swagger

Guia d’us de Swagger.

e CU_ARQOQ09 - Accés a capa de negoci

Guia d’accés a la capa de negoci

e CU_ARQO10-Accés aBBDD

Guia d’accés a base de dades

e CU_ARQO010.1 - Desnormalitzacié i modelatge del model de dades
Guia de desnormalitzacié i modelatge del model de dades

e CU_ARQO11_Invocacié_a_altres_serveis_sincrons

Guia d'invocacio a altres serveis sincrons

e CU_ARQO12_Interacci6_cap_a_sistemes_externs_(capa_negoci)
Guia d'interaccié cap a sistemes externs des de la capa de negoci.

e CU_ARQO13 Cache

Guia d’Us de cache

e CU_ARQO14_Editor_de_documents

Guia del editor de documents

e CU_ARQO15_Signatura_Electronica

Guia de la signatura electronica

Document d’Arquitectura Especificacio Arquitectura Pagina 113 de 116
JUS Canigo3.6.5_CloudNative.doc

W Generalitat de Catalunya
WY Departament de Justicia

e CU_ARQO16 Procés Asincron

e CU_ARQO16.1 Accés a eines de comunicacio asincrona
Guies d’eines de comunicacid asincrona.

e CU_ARQO17 Reporting

Guia de reporting

e CU_ARQO18 Monitoritzacié

Guia de monitoritzacio

e CU_ARQO19_Enviament_de_correus

Guia d’enviament de correus

e CU_ARQO020_Logging_distribuit

Guia de logging distribuit

e CU_ARQO21 Auditoria

Guia d’auditoria

e CU_ARQO022_Gesti6_d_excepcions

Guia de gestié d’excepcions

e CU_ARQO023_Actualizar_configuracions_en_calent
Guia d’actualitzacié de configuracions

e CU_ARQO24_Notificacions_PWA_backend

Guia de notificacions PWA part backend.

e CU_ARQO025_Transaccionalitat_i_SAGA

Guia de transaccionalitat i SAGA

e CU_ARQO026 Accés a serveis negoci des de sistemes externs
Guia d’accés a serveis des de sistemes externs.

e CU_ARQO27 Processos Batch

Guia de processament batch

e CU_ARQO028 ARQ Integracié Capa Dades

Guia d'integracié a capa de dades

Document d’Arquitectura Especificacio Arquitectura

JUS Canigo3.6.5_CloudNative.doc

Pagina 114 de 116

W Generalitat de Catalunya
WY Departament de Justicia

e CU_ARQO029 Swagger APl Manager

Guia de configuracio de Swagger APl a API Manager.
e CU_ARQO30 (ANNEX ATEC) - Guia navegacid técnica
Guia de navegacié técnica ATEC

e CU_ARQO30-31 - Interficie grafica

Guia de casos d'Us de la interficie grafica

e CU_ARQO34 - Canvi de context

Guia de canvi de context a frontend

e CU_ARQO35 - Monitoritzacié capa client

Guia de monitoritzacié a capa client.

e CU_ARQO36 - Microfrontends

Guia de microfrontends

e CU_ARQO37 - PWA

Guia de PWA a capa client.

e CU_ARQ_32-33-Capa de presentacio (general)

Guia general de la capa de presentacio.

Document d’Arquitectura Especificacio Arquitectura

JUS Canigo3.6.5_CloudNative.doc

Pagina 115 de 116

W Generalitat de Catalunya T
WY Departament de Justicia

8.2 GLOSSARI DE TERMES

e A-Component: components no lligats a la tecnologia. La logica funcional de I'aplicacié és encapsulada aqui.
Els tipics elements podrien ser components per a la gestié de tramits judicials, etc.

e T-Component: components d’arquitectura que utilitzen la infragstructura técnica per tal de proveir serveis

que son requerits per I'aplicacid. No contenen elements especifics del domini funcional de I'aplicacid. Els

tipics elements podrien ser componenets per a SSO, Autenticacid, Autoritzacio, Accés a cues JIMS, etc.

DAO: Patré de disseny Data Access Object

DTO: Patré de disseny Data Transfer Object

JMS: Java Message Service

JSON: JavaScript Object Notation

JWT: JSON Web Tokens

OSB: Oracle Service Bus

POJO: Plain Old Java Object

POJI: Plain Old Java Interface.

QA: Quality Assurance

REST: Representational State Transfer

SSO: Single Sign-On

XML: Extensible Markup Language

Document d’Arquitectura Especificacio Arquitectura Pagina 116 de 116
JUS Canigo3.6.5_CloudNative.doc

