N Generalitat de Catalunya
Centre de Telecomunicacions
¥/ i Tecnologies de la Informacio

Especificacio
d’Arquitectura Justicia

Canigo3.4 — Cloud Native

Projecte Nom
Arquitectura ESPECIFICACIO D’ARQUITECTURA JUSTICIA — CANIGO3.4 CLOUD NATIVE
Client

GENERALITAT DE CATALUNYA — CTTI (CENTRE DE TELECOMUNICACIONS | TECNOLOGIES DE LA
INFORMACIO)

Nom de I'arxiu Responsable tecnic
Especificacio Arquitectura
JUS_Canigo3.4_CloudNative.doc

Data Fase actual

13/12/2022

Document d’Arquitectura Especificacio Arquitectura Pagina1de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

CONTROL DE DOCUMENTACIO

Identificacié

Referéncia Tipus document Localitzacié document Difusio
ARQ_CAN34_CL | Arquitectura RESTRINGIDA
OUDNATIVE

Autor(s) Revisat per

Control de canvis

Versio Autor(s) Motiu Data

0.1 Arquitectura OIT Versio6 draft inicial 23-07-2020
1.0 Arquitectura OIT Versio definitiva 18-10-2021
1.1 Arquitectura OIT Canvi eina WSO2 per Keycloak 08-04-2022

No utilitzar eina Pentaho

1.2 Arquitectura OIT Eliminar referéncies a decisions antigues 12-04-2022
1.3 Arquitectura OIT Eliminar referéncies a decisions antigues (ll) 20-04-2022
14 OTEC Eliminacié de referéncies proveidor 13-12-2022

Document d’Arquitectura

Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina2de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Distribucioé de copies

Organitzacio
Generalitat de Catalunya

Persones

Document d’Arquitectura

Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina3de 115

AT Generalitat de Catalunya
Centre de Telecomunicacions
¥/ i Tecnologies de la Informacio

INDEX
1 INTRODUCCIO ...ttt 6
1.1 PROLEG ..o e e ettt 6
1.2 DESTINATARIS ..ttt e e e e e e e e e eeaaaes 6
2 DIRECTRIUS ARQUITECTONIQUESooviieeeeeeeeeeee e 7
2.1 OBJECTIUS DE LARQUITECTURA ... 7
2.2 TASCA DE!_ SISTEMA ..t 8
2.3 CASOS D’'US DEL SISTEMA RELLEVANTS D'ARQUITECTURA 9
2.3.1 Casos d’us capa de distribuCio RESTccoiiiiiiiiiee e 9
2.3.2 Casos d’'Us de la capa d€ NEJOCiccceeeeeiieiiiiei i 13
2.3.3 CasosdUsdelacapadeintegracCio.........cccccccceriiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeee 23
2.3.4 Casos d’'Us de la capa de presentacioccceevvveiiieiiiieiieeiieeeeeeeeeeeeeeeeee e 25
3 CONVENCIONS | RESTRICCIONS GENERALScccoooiiinnn 31
3.1 CONCEPTES | COMPONENTS. ..ot 31
3.1.1 Arquitectura de RefEréncCiaooovvvivviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 31
3.1.2 Serveis, Components, Frameworks, Llibreriescccccoiiiiiiiiiicie, 31
3.1.3 Bones Practiques de la Tecnologia de Referéncia............cccccceeeiiiniiiiiiiinne 32
3.2 ALTRES CONVENCIONS | RESTRICCIONS GENERALScoovvvieeee, 33
3.2.1 Normatives de programaciOoueeeiiiiiiiiiiie e 33
3.2.2 Gestid de la configuracio.............coooeviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 33
3.2.3 Procés de desenvolupament.................cooi 33
3.24 Eines de Desenvolupament i Area de Treball............ccuvvvvviiiiiiiiiiiiis 33
4 ESPECIFICACIO D’)ARQUITECTURA ... 34
4.1 VISTA GENERAL ...t 34
4.2 VISTA DE CONTEXT ...ttt e e 36
4.2.1 Invocacio des de sistemes externs cap a aplicacions internes..........cccccceeevveeee... 36
4.2.2 Invocacio des d’aplicacions EjCat+ cap a sistemes externs........ccccccevvvevvvevveeeene. 37
4.2.3 Interficies amb sistemes INternSs...........cc.veeiiiii i 38
4.3 ARQUITECTURA DE SEGURETAT ..ottt 41
4.31 Nivells de SeguUIetal........cooooiiiiiii e 41
4.3.2 Descripcio técnica de la solucio de seguretat.............coeeeeeiiiiiiiiiiiii 42
44 ARQUITECTURA PROCESSOS PLANIFICATS. ..., 46
4.5 PROPIETATS TRANSVERSALS DEL SISTEMA.......coomieeieeeeeee e, 47
5 VISTES DE L’ARQUITECTURA DE REFERENCIA.......c.ccceovveee... 48
5.1 GENERAL ...t e e e e e 48
5.1.1 RV 4] = T (o Yo 1 o= T 49
5.1.2 Vistade desplegament......... ..o 50
5.1.3 Vista d'implementacio ..., 52
5.2 CAPA DE PRESENTACIO — ANGULARouuiiii it 56
5.2.1 Nomenclatura i responsabilitatSuuuiiiiiiiiiiiii s 56
522 VistaestatiCa.......ooo i 70
523 Vista din@miCa........oooiiiiiiii 71
524 Vista d'implementaciOcoovviiiiiiiiiiiiiieeieeeeeeee e 72
Document d’Arquitectura Especificacio Arquitectura Pagina4de 115

JUS_Canigo3.4_CloudNative v1.4.doc

AT Generalitat de Catalunya
Centre de Telecomunicacions
¥/ i Tecnologies de la Informacio

5.3 CAPA DE DISTRIBUCIO — SERVEIS REST ..ot 76
5.3.1 Serveis RESTFUL ... 76
5.3.2 Bones practiques de disseny de serveis REST ... 76
5.3.3 Nomenclatura i responsabilitats ... 78
5.3.4 FOrmat JSON L. e e e e e e e et e e aaeaees 79
5.3.5 Seguretat (JWT i Spring SECUNILY).......cooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeee e 81
5.3.6 Definicié dels Controllers i els métodes de 'API RESTulcccvviiiiiiiieiiiie 90
5.3.7 Exposicio de '’API REST amb Swagger ... 91
5.3.8 Stack de 10gging distribUit..........ooiiumimiiiii 92
5.3.9 Vista estatica de la capa de distribucid REST ..., 93
5.3.10 Comunicacié entre la capa de distribuciéo REST i la capa de negoci................... 94
5.3.11 Vista d'implementaciooooo i 95

54 CAPADE NEGOCIH..... it e e e e 96
5.4.1 Nomenclatura i responsabilitatSuuuiiiiiiiiiiii s 96
54.2 ViSta @STAtICAeeeeeieeieieee ettt annnne 97
54.3 Vista dinAmiCa.......coooiiiiiiii 98
5.4.4 Vista diImplementacio ... 98

55 CAPADINTEGRACIO ... 100
5.5.1 Nomenclatura i responsabilitats ..., 100
55.2 Vista @StAtICA.....eiiiiiiiieiieeeeeeeeeeeee e 100
5.5.3 V4T €= e 10 =T o o1 o= T 102
554 Vista dimplementacioccccooiiiiiiiiiiiii e 105

6 DECISIONS DARQUITECTURA ..., 106

6.1 DECISIONS ARQUITECTONIQUES ...t 106
6.1.1 Plataforma de contenidorsuuuiiiiiiiiii e 106
6.1.2 Dades compartits entre serveis vs Dades propetat d’'un unic servei 106
6.1.3 Base de dades Relacional Oracle vs Documental MongoDB.................cccuvveeeee. 106
6.1.4 BBDD d€ CONSUIA.uuieiiiiiiiiiiiiiii ettt eeeeeeeeeeneennennne 107
LT 8 S T N o I .= = o 1= RSP 107
6.1.6 Service MESh ... 108

6.2 AVALUACIO DE TECNOLOGIEScooreeee e 109
6.2.1 Implementacié de serveis RESTfUL ... 109

6.3 DECISIONS SOBRE COMPRA / DESENVOLUPAMENT / REUTILITZACIO

.. 109

6.4 PUNTS PENDENTS ... 110

7 OPERACIO, ROLLOUT | GESTIO APLICACIOccceeeeeeeeeeen. 111

7.1 ROLLOUT ettt e aeeeeenens 111

7.2 OPERACIO ... e 111

7.3 GESTIODE L’APLICACIO ... 111

8 APENDIX ... 112
8.1 DOCUMENTACIO DE REFERENCIA ..., 112
8.2 GLOSSARIDE TERMES ..ot 115

Document d’Arquitectura Especificacio Arquitectura Pagina5de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

1 INTRODUCCIO

1.1 PROLEG

Aquest document descriu la solucié arquitectonica per a projectes del Dept. Justicia amb Canigd 3.4 i front-end
Angular 9 desplegats a plataforma Cloud.

Degut a que aquest document és una evolucié de I'arquitectura del projecte elusticia.cat (eJCAT), basats un
subconjunt de moduls en Canigo1 + JSP, i altres moduls en Canigo 3 + JSF o Angular, en algunes parts d’aquest
document es fara referéncia a la paraula eJCAT (referéncies a documentacid, arquitectura, etc.) pero cal entendre-ho
sempre en un sentit més global, aplicant a qualsevol projecte del Dept. Justicia que hagi de fer Us d’aquesta nova
arquitectura.

1.2 DESTINATARIS

Aquest document té com a destinataris els Caps de Projecte, Arquitectes Tecnics, Analistes Organics, Analistes
Funcionals i Programadors dels projectes i serveis de Justicia, per tal que puguin comprendre I'arquitectura del
projecte i d’aquesta manera desenvolupar les seves funcionalitats d’acord amb el queé dicta aquesta arquitectura.

Document d’Arquitectura Especificacio Arquitectura Pagina6de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

2 DIRECTRIUS ARQUITECTONIQUES

Aquest capitol descriu els objectius més importants d’arquitectura i les seves restriccions externes.

2.1 OBJECTIUS DE L’ARQUITECTURA

Els objectius d’arquitectura vindran dictats en gran mesura pels requeriments no funcionals i restriccions generals del
projecte. Cada sistema d'informacio ha de tenir definits i documentats els seus propis Requeriments No Funcionals.

Es poden destacar alguns principis d'arquitectura (CTTI o propis) dins I'arquitectura JUS-Canigo 3.4 Cloud:

e Arquitectura desacoblada: per permetre als components i aplicacions mantenir-se completament autonoms i
independents.

e Arquitectura orientada a serveis: cada cop més, les aplicacions poden ser consumides externament (exposant la
seva funcionalitat) o bé han d’integrar-se amb aplicacions de tercers. Les relacions s'han de dur a terme
mitjancant serveis sempre que sigui possible.

o Utilitzar solucions transversals: sempre que sigui possible, com p.ex. GICAR o el framework Canigo.

e Generar codi estandard i no propietari. S'assumeix que la utilitzacié optima d'alguns productes comercials (HCP
Hitachi, LibreOffice) genera certes dependencies que s'intentaran minimitzar i limitar a moduls que n'explotin els
beneficis amb escreix.

Document d’Arquitectura Especificacio Arquitectura Pagina7de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

2.2 TASCA DEL SISTEMA

El projecte e-Justicia.cat comprén I'estratégia per a modernitzar I'’Administracié Judicial de Catalunya i defineix tres
arees fonamentals d’accié: organitzacid, infraestructura i tecnologia. Dins I'area tecnologica trobem, entre d’altres, la
necessitat d'implementar un nou sistema de gestié judicial que permeti a Catalunya posicionar-se com a lider en
I'ambit de Justicia.

e Amb innovacié tecnologica

e Revisant els processos dins I'ambit de I'’Administracid de Justicia (Jutjats, Procuradors, Serveis Comuns, etc.), i
donant cobertura a la nova Oficina Judicial.

e Obrint ’Administracié de Justicia a tots els actors implicats
e Trobant eficiencia i eficacia en la posta en marxa dels serveis judicials

A nivell tecnic, el nou sistema modifica les arquitectures anteriors per adaptar-la a la nova versié del framework Canigé
3.4 i permetre desplegar nous moduls i funcionalitats al Cloud. La nova arquitectura del Departament de Justicia
utilitza un front-end basat en Angular 9.

L’'arquitectura del sistema ha de permetre la convivéncia entre els nous projectes i sistemes més antics del
Departament (p.ex. TEMIS basat en PowerBuilder, moduls eJCAT en Canigo 1, mdduls eJCAT en Canigo 3.2, etc).

Document d’Arquitectura Especificacio Arquitectura Pagina8de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

2.3 CASOS D’US DEL SISTEMA RELLEVANTS D’ARQUITECTURA

En aquest capitol s’identifiquen els casos d’Us més rellevants a nivell arquitectonic perqué:

e Representen una funcionalitat central del sistema
e Elseuambit d’influencia engloba varies arees d’arquitectura
e Faemfasi en un punt d'arquitectura especific i delicat

Cal tenir en compte que aquests casos d'Us es poden traduir més endavant en la implementacié d’un component
d’arquitectura (T-Component) o bé simplement reflectir un escenari que cal especificar com a patrd arquitectonic,
sense cap implementacio associada.

2.3.1 Casos d'Us capa de distribucié REST

uc Knowledge Area Distribu-:'.iﬁ/

wauxiliane
CU_ARGQO03.1
Autoritzacit amb un

Prowvider de seguretat

zincludex de distribucio REST

zincludes
L4
s

aauxilianys

CU_ARQ0D05.3 Accés a

Informacio d'usuari

|
«invokess

Usuari Intranet Usuari Extranet

’ !
! %
wpTimanys ! A\
f W
! i
CU_ARGQOO6 Swagger ! '
ainvokess xinvokesx
!]
% / X

!,

Usuari Justicia RE
wauxilians

CU_ARQO05.1 Canvi de
Context MJ-MJ

wauxilisn

CU_ARQ005.2 Canvi de
Context MJ-EJCAT

Document d’Arquitectura Especificacio Arquitectura Pagina9de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e CU_ARQOO1 Autenticacio per Intranet
'autenticacié dels usuaris de la Intranet es delegara en GICAR.

Després de contactar amb la seva Oficina Técnica, i tractar possibles solucions d’integracio amb el nostre
projecte, s’ha optat per desenvolupar la solucié basada en agent de Shibboleth .

Es desenvolupara un T-Component a mida basat en aquest agent, encarregat de redirigir a GICAR per dur a
terme I'autenticacid de l'usuari. Concretament, estara configurat per validar el seu accés contra el directori
d'usuaris de la intranet, amb els mecanismes que tingui configurats (certificat, usuari-password, tarjeta
criptografica...).

En cas d'autenticar-se correctament, GICAR enviara al modul client (p.ex. Portal de la Intranet) el resultat de
I'operacio, en forma de capcaleres.

Finalment, amb el contingut d’aquestes capcaleres aquest modul preparara I'autoritzacié de 'usuari en el nostre
sistema, basada en tokens.

e CU_ARQOO2 Autenticacié per Internet

'autenticacié dels usuaris d’Internet sera similar a la descrita en el punt anterior. Es configurara Shibboleth per
redirigir a un espai de GICAR que validi I'accés contra els directoris d’usuari corresponents per Internet.

Aquest resultat de I'autenticacid sera posteriorment recollit i gestionat pel modul client (p.ex. Portal de la
Extranet).

e CU_ARQOQ3 Autoritzacié amb JWT

Un cop autenticat correctament I'usuari en el sistema, es procedira a preparar la seva autoritzacio.

Aquesta estara basada en tokens JWT en format OpenlD Connect.

La gestié de l'autoritzacid es realitzara mitjancant el servei d’ldentity Provider ofert per el producte Keycloak.
Aquest servei, basat en OAuth?2, oferira la possibilitat de definir nivells d’accessos per separat, segons el tipus

d’usuari a autoritzar en el sistema: un usuari d’intranet, un usuari de I’extranet, un sistema extern, etc...

o CU_ARQOO4 Accés a capa de distribucié REST

Aquest cas d’'Us permet accedir a la capa de logica de negoci, independentment que I'origen de la peticid sigui la
capa de presentacié Angular o la capa d’integracio que gestiona I'entrada des de sistemes externs.

’'accés a la capa de distribucié estara garantida després de superar els filtres de seguretat definits en el punt
anterior.

La definicié de I'API d’operacions REST de cada modul de serveis es realitzara via Spring Web MVC, amb les
anotacions @RestController corresponents.

El format de transferéncia de la informacié entre el front-end i el back-end REST sera JSON, que és un format més
lleuger que d’altres com XML.

e CU_ARQOO05 Canvi de Context (capa de backend)

Document d’Arquitectura Especificacio Arquitectura Pagina10de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

La nova arquitectura de moduls de EjCat+ ha de permetre canviar a moduls implementats amb les altres
arquitectures web de EJCAT:

e Canigd 1.4 amb Struts i capa de presentacid JSP, seguretat implementada amb cookies
e Canigd 3.1 amb JSF, seguretat implementada també amb cookies
e Canigd 3.2 amb serveis REST i capa de presentacid Angular, seguretat implementada amb tokens JWT

Per cada escenari, els moduls hauran d’oferir serveis de backend a mida per garantir que es pot saltar d’una
aplicacié origen a desti, i efectuar el retorn, sense perdre el context on ens trobavem dins I'aplicacié origen. S’ha
de considerar que el canvi de context es realitza al mateix navegador al que s'executa la aplicacié EjCat+ i sera
responsabilitat de cada aplicacio garantir el bon funcionament amb aquest navegador.

e CU_ARQOO05.1 Canvi de Context EjCat+EjCat+

En aquest escenari, des d’'un microfrontend origen d’'un modul de EjCat+ volem passar a un altre implementat
amb la mateixa tecnologia.

Tant I'origen com el desti tenen el seu backend de serveis REST protegits per Spring Security, validant els tokens
contra els mateixos endpoints OpenldConnect de I'ldentity Provider del Keycloak.

Per tant, el mateix token obtingut en origen serveix per al modul desti, i no cal fer-ne cap transformacio. Pero si és
necessari des del modul desti proporcionar un servei REST que retorni tota la informacié necessaria al modul
origen per entrar al seu context (la URL d’entrada i els parametres necessaris de canvi de context)

La informacid relativa a I'usuari que canvia de context no s’ha d’enviar en aquests parametres, ja que viatja de
forma segura en el token JWT.

La resposta que rebra el modul origen a aquesta peticio li permetra fer, des del microfrontend, una redireccié al
desti. Aquest desti, en detectar aquesta entrada, recuperara tota la informacié que s’ha facilitat en la crida, i
preparara el nou context en el nou microfrontend.

En cas que hi hagi una possibilitat de retorn a I'aplicacié origen, aquesta informacié s’haura d’emmagatzemar en
I'espai persistent local de I'usuari administrat per Angular (local storage), de manera que estigui disponible per
preparar el canvi de context en la direccié contraria: el retorn.

o CU_ARQOO05.2 Canvi de Context Ejcat+EJCAT

Aquest escenari és més complex, perqué hem de canviar a contexts de moduls amb diferents implementacions
de seguretat: una cookie administrada per una shared library, o un token JWT adrecat per un modul de seguretat
amida (i que no és compatible amb el token JWT del Keycloak)

Només es contemplen canvis de context per aplicacions Intranet. Actualment, aquesta logica de negoci de canvis
de context la gestiona el modul Portal Intranet actual (implementat amb Canigo 1.4), que ofereix una entrada en el
seu controlador d'Struts per gestionar qualsevol operacié de canvi de context: validar les dades, enregistrar el
canvi, traduir tokens o cookies, i executar la redireccio.

Abans de fer la crida al Portal CAN1.4, pero, el modul origen EjCat+ ha d’oferir un servei REST per preparar els
parametres de canvi de context. A més, els ha de preparar en un format que el Portal CAN1.4 pugui entendre.

A més, aquest Portal no treballa amb tokens JWT, si no que ha de rebre un token més curt (que hem anomenat
token de canvi de context, o tokenCC) que després sigui compatible amb les diferents solucions de seguretat que

Document d’Arquitectura Especificacio Arquitectura Pagina11de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

tenim a tot EJCAT. El nou servei REST implementat al modul origen Ejcat+ també haura de generar aquest
tokenCC.

Amb la informacié del tokenCC i dels parametres, el modul EjCat+ fara la crida al Portal. Aquest validara les
dades, enregistrara I'operacio, fara la traduccid corresponent a Cookie o a token JWT, i executara la redireccio.

Per a la situacio en que des d’'un modul EJCAT hem de fer un retorn a un modul EjCat+, hem d’oferir un endpoint
transversal que tradueixi aguest tokenCC en el token JWT de EjCat+, que esta adrecat pel Keycloak.

Per aquest motiu, el modul Portal EjCat+ oferira un servei REST per conversid de tokensCC en tokens JWT de
EjCat+.

L’aplicacio desti (EjCat+) en rebre el canvi de context executat pel Portal CAN1.4, amb tokenCC, traduira aquest
pel token JWT necessari per poder entrar ja al context del backend de serveis REST de I'aplicacio desti de EjCat+.

e CU_ARQO005.3 Accés a Informacié d’'usuari

La informacio de I'usuari es recupera del d’'un component de gestié d'usuaris, i es desa en el token JWT en el seu
payload de c/aims.

En cada aplicacid, estara disponible un Security Context creat per Spring, un cop la capa de Spring Security ha
donat per valida I'autoritzacio de I'usuari (el token JWT que ha enviat).

Com el nostre endpoint OAuth2 d’adrecament de tokens treballa amb format OpenldConnect, podrem configurar
aquesta capa de Spring Security per validar de forma offline el token, i incloure en el Security Context tots els
claims que acompanyaven en el token que hem validat.

Per dur a terme aquesta validacio es fara servir JIWKS (JSON Web Key Set). Com déiem, gracies a treballar amb
OpenldConnect, no sera necessari en cada request fer una crida addicional (en un Filter) de validacio i
desencriptat del token per extreure els claims, sino que directament Spring Security fara aquesta extraccio, sense
afegir I'overhead d’una crida extra de validacio, i ens deixara el Security Context preparat.

e CU_ARQOO06 Swagger
Swagger és un framework per facilitar el disseny, desenvolupament, i documentacio d'API RESTful.

El mecanisme és el segiient:

Configurarem el projecte de back-end REST, per incorporar les llibreries necessaries i la configuracio base
de Swagger?.

Decorarem els nostres REST Controllers amb unes annotacions propies de Swagger2 per cada classe i servei
exposat (amb els parametres d'entrada, codis de resposta, etc..).

També disposarem d'annotacions pels objectes View Model dels serveis.

Swagger?2, amb component-scan d'Spring MVC, generara automaticament tota la documentacio dels serveis,
en base a les annotacions que hem anat incorporant en el codi.

Es podra consultar de forma online la documentacié generada.

Document d’Arquitectura Especificacio Arquitectura Pagina12de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

2.3.2 Casos d'Us de la capa de negoci

uc Knowledge Area Negoci /

aauxilians
CU_ARQO12.2 Accés a
sistemes externs
{EJCAT via 0SB}

aaLiliane
U_ARGQ012.2.1 Acces
a TEMIS

aauxilianms
CU_ARG012.1 Accés a
e sistemes externs {no
EJCAT)
CU_ARG0Z24
Y\\ MNotificacions PWWA

|
]
|
|
|
'

aaulianys
CU_ARG016.1 Accés a
eines de comunicacic
asinerona

winvokess

|
I
=invokess

I
I
I
]

xzincludes

-

——

== =77 gindudes

wauxilians
CU_ARGD15.1
Transformacid de
documents

ainvokess =invokess sincludes

asuxilians
CU_ARG010.2 Acces
a BEDD de consulta

waLilianys
CU_ARG010.1 Accés
a BEDD propia

|

|

[

|
)

|

|

wgUxiliarys
[CU_ARGO14.1 Accés a
HCP

wauxilianys

CU_ARGO14.2 Acces a
Libre(ffice

aprimans

CU_ARGO23 Actualizar
configuracions en calent

Administrador

(from
Actors)

Document d’Arquitectura Especificacio Arquitectura Pagina13de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e CU_ARQOQ9 Accés a capa de negoci

Les peticions arriben a la capa de distribucio cap als Controller que actuen com a punt d’entrada. Els Controller fan les
crides necessaries a la capa de negoci cap els components Service que contenen la logica de negoci de la
funcionalitat executada.

Un servei es:
e unarepresentacio logica d'una activitat empresarial repetible que té un resultat especificat,
és auto contingut.
pot utilitzar altres serveis per fer les seves tasques
no ha d’exposar la seva implementacio
ha de tenir definida una interficie que determina com s’ha d'utilitzar i els possibles resultats.

Com els consumidors dels serveis no s’han de coneixer com implementa un servei la seva logica de negoci, es
distingira entre la seva interficie (Service) i la implementacid (Servicelmpl). L’accés a un servei sempre es realitzara
mitjancant la interficie i no utilitzara directament la implementacio.

Els Controllers de la capa de distribucidé accediran als Service de la capa de negoci mitjancant el mecanisme
Dependency Injection de Spring, que injectara en els Controllers els Service que siguin necessaris.

Els parametres i resultats de la execucio dels serveis contindran la informacié del model [ogic de la aplicacio i podran
ser objectes del domini o tipus primitius.

Cal referir-se a les especificacions de Canigd 3.4, tant als serveis core com als relacionats amb negoci o integracio per
gran part dels serveis relacionats amb la capa de negoci.

Aquest cas d’Us inclou altres casos d’Us arquitectonics (veure diagrama de casos per aquesta capa logica).

e CU_ARQO10AccésaBBDD

Cal referirse a les especificacions de Canigd 3.4, tant als serveis core com als relacionats amb accés a dades
persistents (Servei de Persisténcia) per gran part dels serveis relacionats amb la capa de servei de dades.

Els components de negoci interactuen amb els components d'accés a base dades per tal d'obtenir els objectes que
manipulen. Qualsevol accés a dades que es vulgui fer des de negoci haura de passar per aquesta capa.

Els serveis son els propietaris de les seves dades. Tot servei de dades esta amagat per defecte darrere un servei de
negoci. En els casos que requereixen la consulta de dades compartides d’altres serveis directament a la capa de
dades, es resoldra mitjancant les estratégies definides a I'apartat 4.2.3 Interficies amb sistemes interns (capa de
dades).

Tota la interaccio amb les dades estara implementat amb Canigd 3.4 que incorpora el Servei de Persisténcia en
MongoDB, que esta basat en Spring Data i el patré DAO (Data Access Object). L'objecte de negoci implementa la
logica de les operacions funcionals amb persisténcia mitjancant crides al DAO que pertoqui. Aquestes classes a més
de fer l'accés a base de dades, també fan un primer tractament de les excepcions de base de dades produides.

e CU_ARQO010.1 Accés a BBDD propia

Per accedir a les dades propietaries del modul es configura la connectivitat principal a la BBDD MongoDB amb les
dades definides per propietat i que s’indicara via YAML de configuracié, o ConfigMap d'OpenShift

Document d’Arquitectura Especificacio Arquitectura Pagina14de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Aquesta configuracio sera tractada per classes amb anotacié @Configuration incloses en la llibreria comuna jus-
canigo3.4-cloud-lib , addicionalment en la mateixa llibreria s’ha creat la classe justiciaMongoGenericDAO que permet,
mitjancant les funcionalitats basiques de lectura i escriptura, I'accés a base de dades. El programador en cap moment
s'ha de preocupar d'obrir 0 tancar connexions, sessions 0 transaccions programaticament, sind que aquesta
funcionalitat s'ha delegat declarativament en el framework.

e CU_ARQO010.2 Accés a BBDD de consulta

La BBDD de consulta sera una BBDD consultable pels serveis que ho requereixin on hi haura dades de les diferents
BBDD dels serveis. Aquestes dades poden estar normalitzades o replicades i les podrem trobar com a col-leccions
independents amb estructures iguals o similars que a les bases de dades dels serveis, 0 bé les podem trobar amb
altres estructures. Podrem trobar dades desnormalitzades de diferents col-leccions agrupades en una, o també grans
col-leccions que permetin obtenir d’una tacada conjunts de dades de diferents serveis en una sola consulta.

Aquesta BBDD permetra realitzar consultes creuant diferents negocis.

e CU_ARQO11 Invocaci6 a altres serveis sincron

Per tal de comunicar serveis entre si s'utilitzen els mecanismes propis de la plataforma Openshift (serveis) i els
aportats per 'API Manager i el service Mesh

0 El Service Mesh sera emprat per optimitzar el funcionament de les aplicacions.

0 L’API Manager sera el component arquitectonic encarregat d’exposar les API's de les serveis del
sistema cap a |'exterior amagant detalls de la implementacio.

o CU_ARQO12 Interaccié cap a sistemes externs (capa negoci)

Aquest cas d'Us quedara detallat en els dos casos d'Us fill que el componen. Hi haura dos possibilitats a I'nora de
comunicar-se amb sistemes externs:

0 Sortida directa
0 Sortida via serveis que facin feina de fluxos d’integracio
e CU_ARQO12.1 Accés a sistemes externs (no EJCAT)

Siun servei d’EJCAT+ ha de comunicar-se amb un servei extern podra fer-ho de manera directa si el servei extern té un
interficie REST. Les crides REST contra serveis externs haurien de ser dotades de técniques de resiliéncia com
timeouts per tal d’assegurar que un possible problema a un sistema extern i no controlat per nosaltres no afecta a
I'estabilitat del nostre sistema.

En sistemes més antics que no puguin oferir serveis REST i s'hagin d'accedir amb altre tipus de protocol es podra fer
Us de Sl (Spring Integration). Mitjancant Sl es podran crear peces (serveis d'integracid) encarregades de rebre
peticions REST dels serveis de EJCAT+ i transformar aquestes peticions cap als protocols necessaris segons la
plataforma o aplicacio que s'hagi de consumir. A més de canvis de protocol amb Sl es podran oferir serveis ampliats
com WS-Security, WS-Attachments, MTOM...

Document d’Arquitectura Especificacio Arquitectura Pagina15de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e CU_ARQO12.2 Accés a sistemes externs (EJCAT via OSB)

Aquest cas d’'Us és un cas concret del cas d'Us 12.1 en el que es deixa constancia que per accedir a EJCAT caldra fer-
ho via OSB ja que és la seva porta d’entrada i sortida estandard per comunicar-se amb sistemes externs.

e CU_ARQO012.2.1 Accés a TEMIS

Una gran part de les aplicacions EJCAT encara han de conviure amb TEMIS (antic sistema d’informacié de Justicia
codificat en PowerBuilder).

La interaccié entre EJCAT i TEMIS es fa actualment de la seglient manera:
e Des d'una aplicacio JEE cap a TEMIS, es configurara un datasource al servidor d’aplicacions JEE que
accedira a través de procediments PL/SQL a funcionalitat de TEMIS
e Des de TEMIS cap a una aplicacié JEE, mitjangant la invocacié de web services (directes o via OSB), o crides
HTTPS a punts concrets de I'aplicacio.

Les interaccions entre EjCat+ i TEMIS es fara de la seglient manera:

e Des d'una aplicacié desplegada en arquitectura Cloud no s’hauria d’accedir a funcionalitats de TEMIS.
Per0 a cassos excepcionals amb una volumetria moderada es pot exposar un servei REST a I'OSB per
tal que pugui ser cridat des de I'aplicacié Cloud. El servei de 'OSB s’haura d’encarregar de realitzar la
transformacio de les dades que sigui adient i executar les funcions emmagatzemades a la base de
dades de TEMIS per tal que realitzin la tasca o cerca d’informacio adient.

e Des de TEMIS cap a una aplicacié desplegada en arquitectura Cloud, a cassos amb una volumetria
moderada, TEMIS invoca a un servei de 'OSB que s'encarrega de realitzar una invocacié d'Un servei
REST exposat per la aplicacio Cloud.

A nivell de dades si que podria existir intercanvi d’informacié entre les BBDD de TEMIS i les de EjCat+. Aquest
intercanvi d’informacié (sigui de TEMIS a EjCat+ o de EjCat+ a TEMIS)

Per a més informacié sobre cada accés es pot consultar el DTE corresponent de cada una de les aplicacions.

e CU_ARQO13 Cache

Dins el marc de les aplicacions de Justicia , existeix la necessitat de cachejar les respostes de les crides als serveis
REST transversals.

Per aquesta necessitat, en la llibreria jus-cache-canigo3.4-cachecloudlib s’ha creat un T-Component
justiciaCacheExtDAO que contindra les funcions basiques en quant a utilitzacié de la Redis Cache. L'Us d’aquest
component s’encarregara de cachejar les respostes diariament per evitar un excés de crides als serveis RESTS

Aquesta llibreria per cachejar les respostes es connectara a una instancia compartida de Redis Cache Server que es
trobara instal-lat en el Openshift, I'is de la cache compartida evitara que les dades puguin ser diferents en cada
memoria cau, com podria ocorrer amb l'emmagatzematge en cache privat. L'emmagatzematge en memoria cau
compartit garanteix que diferents instancies d'una aplicacié veuen la mateixa vista de dades en la caché. Per a aixo, es
publicara com a part d'un servei independent;

Document d’Arquitectura Especificacio Arquitectura Pagina 16 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥UL¥ i Tecnologies de la Informacié

(&- ILLl

Addicionalment, aquesta llibreria permet que qualsevol modul pugui importar o crear cacheManagers per si el modul
te una necessitat especifica de cachejar serveis propis.

Per defecte la llibreria tindra dos cacheManagers configurades i amb la possibilitat de ser utilitzades per qualsevol
modul que aixi ho requereixi:

cacheManagerHour. Cache Manager configurada a 1 hora. Al utilitzar aquesta cacheManager, totes les
entrades expiraran al cap de una hora.

cacheManagerDay. Cache Manager configurada a 1 dia . Al utilitzar aquesta cacheManager, totes les
entrades expiraran al cap de una hora.

e CU_ARQO14 Editor de documents

L’editor de documents és un A-Component (component funcional) de tipus JavaWebStart que s’executa en client i que
és I'encarregat de editar cert tipus de documents que es generen a Justicia, en quée l'usuari resol tot una serie de
marques per tal de donar-li contingut al document.

Aquests documents és connectaran amb LibreOffice (veure el CU_ARQO014.2) per tal de transformar-los al format
definitiu que s'emmagatzemara dins de HCP (CU_ARQ014.1)

e CU_ARQO14.1 Accés aHCP

Als sistemes d’informacié de Justicia existeixen una gran quantitat de moduls que necessiten interactuar amb un
repositori documental. Historicament el repositori documental ha estat un servidor Documentum que en la nova
arquitectura Cloud sera substituit per un HCP de Hitachi.

Document d’Arquitectura Especificacio Arquitectura Pagina17de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥UL¥ i Tecnologies de la Informacié

Es delegara I'accés centralitzat a HCP a un altre modul funcional (A-Component desenvolupat en Canigo3.4 i
desplegat al Cloud) anomenat GDO+ (Gestor Documental). Aquest modul utilitzara I'API REST de HCP per tal
d’interactuar amb HCP.

Les noves aplicacions desenvolupades en arquitectura Canigo 3.4 Cloud Native accediran directament al GDO+ per
descarregar i carregar documents. Les aplicacions existents que ja interactuen amb I'aplicacié original GDO ho
seguiran fent aixi i sera GDO qui interactuara amb GDO+ per tal que interactui amb HCP.

ElB GDO GDO+ HCP
—» 0N
Moduls
actuals I .
©0 e —— B
Nou
Madul
i Wrapper
WS J—
e [=
(L__T11
g
Aplicacié . Vs
extranet TR
IEM apiconne
[rraTT—
i
|

Es pot consultar el document DTE de GDO i GDO+ per ampliar el detall d’aquest cas d’Us.

e CU_ARQO014.2 Accés a LibreOffice

Per tal que el A-Component (modul funcional) de I'editor de documents pugui assolir tots els requeriments
funcionals (es pot consultar el DFU del modul corresponent per ampliar els detalls sobre els requeriments
funcionals) es necessari que es connecti a una aplicacié de tercers per a realitzar la generacié de documents, en
aquest cas un LibreOffice.

A diferencia del cas d’us de transformacié de documents (CU_ARQO15.1) que també necessita una aplicacié de
tercers per generar documents, en aquest cas l'accés es realitza de manera local a les maquines dels usuaris, que

ja porten pre-instal-lades un LibreOffice per permetre I'Gs de I'editor.

Per veure com es realitza aquest accés des de I'editor, es pot consultar el DTE del mddul corresponent on es
trobaran tots els detalls sobre la interaccid entre I'editor i el LibreOffice.

e CU_ARQO15 Signatura Electronica

Certs moduls de Justicia necessiten serveis de signatura electronica. Principalment:

0 Signar amb certificat d’'usuari: s’utilitza un applet desenvolupat per CatCert a tal efecte

0 Signar amb un certificat d’aplicacié: des de la capa de negoci d’'un modul, s’invoca a un A-
Component de tipus EAR anomenat SIG que actua de facana per a la interaccié amb la plataforma
PSIS de CatCert

Document d’Arquitectura Especificacio Arquitectura Pagina18de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

O Validar un certificat d’'usuari: com al cas anterior, s'utilitza la fagana de SIG per a la interaccié amb la
plataforma PSIS de CatCert

Apart, existeix un altre A-Component de tipus EAR anomenat SSE (Safata Signatura Electronica). Aquest modul
interactua amb la plataforma PSA de CatCert, i proporciona funcionalitats de workflow de signatures
(aprovacio/denegacio, multi-signatures, etc.).

Es pot ampliar la informacié sobre la utilitzacié de Signatura al document DTE del modul SIG. Es pot ampliar la
informacid sobre el modul Safata Signatura Electronica al DTE del modul SSE.

e CU_ARQO15.1 Transformacié de documents

La gran majoria de documents que es generen a Justicia son en format PDF, ja siguin documents generats per les
aplicacions o documents adjuntats per I'usuari. La transformacié d’aquests documents del format original (RTF,
Word, Excel, ...) al format demanat PDF es realitza mitjangant un sistema extern de transformacié de documents,
al qual es fa arribar el document original i aquest el retorna transformat a PDF.

Per temes d’optimitzacid de consum de memodria i temps de transformacid, es fa una separacio entre documents
originals en format Windows (Word, Excel) i documents que poden ser transformats en UNIX (RTF, ODT). Aquesta
separacio es totalment transparent per I'usuari, ja que la realitza I'OSB depenent del format original del document
a transformar.

Es delegara I'accés centralitzat per la transformacié de documents a un modul funcional (A-Component de tipus
EAR) anomenat STD (Servei de Transformacié de Documents). Aquest moddul s’instal-lara dins el Oracle Service
Bus (OSB) i s’invocara via webservice.

Aquest modul STD proporciona les seglients funcionalitats:

0 Normalitzacié de format a PDF a partir de documents ofimatics

0 Transformacié de documents a partir d’'un document pre-configurat mitjangant un sistema de
plantilles

0 Creaci6 de codi segur de verificacié del document

0 Signatura digital del document normalitzat i transformat (delegant certes operacions de signatura en
el modul SIG)

e CU_ARQO16 Procés Asincron

S’ha de donar resposta a les possibles necessitats de comunicacions asincrones entre serveis de I'arquitecturai a
aquest apartat s’engloben els casos d’Us relacionats amb aquesta necessitat.

e CU_ARQO16.1 Accés a eines de comunicacio asincrona

Com eina per realitzar comunicacions asincrones entre els serveis que formen part de la arquitectura es va
seleccionar Kafka.

A la llibreria comuna jus-canigo3.4-cloudib existeix un T-Component que permet configurar i realitzar aquesta
integracid. S’ha realitzat una guia [CU_ARQO016.1 Accés a eines de comunicacié asincrona] per explicar la
configuracié necessaria per realitzar comunicacié asincrona entre els serveis de la arquitectura cloud mitjangant
I'eina Kafka.

e CU_ARQO17 Reporting

Document d’Arquitectura Especificacio Arquitectura Pagina19de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Dins el marc de les aplicacions de Justicia, existeixen diversos moduls que generen documents, a partir de les
dades existents a base de dades, per distribuir als usuaris.

Aquests documents generats, en format Excel o PDF es realitzen populant de dades les plantilles corresponents.
S’ha establert un mecanisme per treballar amb JasperReport per definir aquestes plantilles i com s’utilitzen des de
les aplicacions .S’ha realitzat una guia [CU_ARQO17 Reporting] de JasperReport per obtenir més informacié de la
interaccid entre les aplicacions i els reports.

e CU_ARQO18 Monitoritzacid

Les aplicacions poden exposar indicadors del seu comportament i estat (métriques). Aquestes metriques poden
estar recollides per eines externes per tal d'alliberar a les aplicacions del seu tractament.

S’ha realitzat una guia [CU_ARQO18 Monitoritzacid] on es descriu els passos per integrar la generacié de
meétriques de negoci a aplicacions i la seva posterior recol-leccid.

e CU_ARQO19 Enviament de correus

Per gestionar I'enviament de correu en la llibreria jus-cache-canigo3.4-cloud-ib s’ha creat un T-Component
JusticiaSimpleMailBuilder que les aplicacions faran servir per enviar correus.

La configuracio del component (host, port, .. .) es realitza amb ConfigMap d'OpenShift.
e CU_ARQO20 Logging

Per gestionar les traces que generen els nostres serveis utilitzarem els seglients productes especialitzats en
entorns cloud i basats en OpenTracing: I'stack EFK i el producte Jaeger.

e CU_ARQO021 Auditoria

Dins el marc de les aplicacions de Justicia , existeix la necessitat d’ auditar les operacions que realitzen els usuaris
sobre la base de dades.

En la llibreria jus-cache-canigo3.4- cloud-lib s’ha creat un T-Component AuditCommandListener que audita totes
les operacions a la base de dades, ja siguin de consulta com d’actualitzacié i publica un missatge de tipus
asincron amb el detall de I'operacié. En el missatge consta, entre altre informacio:

0 Nomde l'aplicacio

Base de dades sobre la que s’ha realitzat I'operacio
Col-leccid

Usuari connectat a I'aplicacio que ha realitzat I'operacio.
Data y hora

Sentencia executada en format JSON,

Resultat en forma JSON.

Temps consumit per la sentencia.

O O O0OO0OO0OO0DOo

S’ha creat el modul justicia-audit-service que processara els missatges publicats per les aplicacions i els enregistra
a base de dades.

Document d’Arquitectura Especificacio Arquitectura Pagina20de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥UL¥ i Tecnologies de la Informacié

. —» Service A kafka— subscribe — Audit service
- Pt

p,ublish

| %
JusticiaMongoTemplateBuilder -

(AuditCommandListener) - audit

¢ mongoDDB

compass audit

BBDD BBDD
Service A Audit

e CU_ARQO0?22 Gestio d'excepcions
Tal com s’ha definit en altres arquitectures web similars de Justicia, definirem dos blocs diferenciats d’excepcions:
e Excepcions de negoci (checked): consistents en errors de validacié o dades.

e Excepcions de runtime (unchecked): provocades per errors inesperats aliens al comportament funcional
del servei: problema de comunicacions, base de dades, operacions de disc, etc...

Es definiran dos T-Components principals a mida per cada tipus d’excepcid, i també classes a mida per gestionar
de forma comuna la transformacioé de les excepcions en respostes a la crida REST efectuada.

e JusticiaBusinessException
e JusticiaSystemException
e JusticiaResponseEntityExceptionHandler

e CU_ARQO23 Actualitzar configuracions en calent

Segons la necessitat disposarem de dues eines diferents d'aconseguir fer canvis "en calent" sense haver de fer un

canvi al codi.

Per tal d'aconseguir-ho podrem fer-ho:

e Via configmaps: Els serveis desplegats al cloud fan Us de descriptors de desplegaments, secrets, routes,
services, configmaps ... Farem (s dels configmaps per aconseguir refrescar certes propietats que ens
interessi

e Via cache: Permetra agilitzar algunes parts del codi i a banda podrem tenir a bbdd algunes propietats que
son susceptibles de ser canviades. Amb aquest sistema podem estalviar desplegaments i guanyar flexibilitat

o CU_ARQO024 Notificacions PWA (backend)

El component de notificacions Web Push és un cas d'Us principalment de frontend. Tanmateix, des del backend
cal oferir una série de funcionalitats en un T-Component comu de tipus servei, per gestionar-les dins el projecte
EjCat+. Aquest servei oferira:

e Manteniment de les peticions de subscripcid Web Push, generades pel navegador de 'usuari, en cas
gue aquest accepti rebre notificacions del nostre projecte.

Document d’Arquitectura Especificacio Arquitectura Pagina 21 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Aquestes subscripcions es desaran en una col-leccié MongoDB publicada a tal efecte, i posteriorment
s'utilitzaran per propagar els avisos segons el grau d’especialitzacid que es destigi: per usuari individual
0 per agrupacié funcional d’usuaris

e Generacit de les claus publiques i privades per autenticar les notificacions als diferents servidors de
Web Push (Mozilla, Google Chrome, Microsoft Edge,...)

e (estid de les peticions de baixa de subscripcid. L'usuari, en qualsevol moment, pot indicar al navegador
que vol deixar de rebre avisos de la plataforma, i en aquest cas, cal gestionar la corresponent baixa al
sistema Web Push del navegador.

e CU_ARQO025 Transaccionalitat i SAGA

A contextos tradicionals, com poden ser les aplicacions JEE, transaccionalitat es pot entendre com equivalent a
l'acronim ACID utilitzant el protocol conegut com 2PC (two-phase commit) per realitzar transaccions ACID
distribuides. A arquitectures encara més distribuides, 2PC no és una opcid recomanable per motius de
rendiment, i incls no hi ha un suport consolidat a 2PC en protocols lleugers d'invocacié REST. Es una restriccid
coneguda a aquestes arquitectures que descarten |'s de transaccions distribuides amb propietats ACID.

El fet de no utilitzar transaccions distribuides de tipus ACID no treu que la necessitat de transaccionalitat
distribuida pugui existir. L'opcidé per aquesta necessitat a les arquitectures distribuides passa per I'is de
transaccions descrites per la nocié de consistencia eventual. En relacid a la consisténcia eventual, comunament
es parla de BASE: Basically Available, Soft estate, Eventually consistent.

Una aproximacid per descriure la consisténcia eventual és considerar que el sistema no evoluciona entre dos
estats consistents de dades de manera atomica siné que des de que s'inicia una transaccid, els sistemes poden
passar per altres estats visibles, potencialment no consistents fins que s'arriba a un nou estat final, que mostra
correctament la transaccio completament aplicada. De la mateixa forma, la cancel-lacié dels canvis (a ACID:
rollback), no és atomica sin6 també subjecte a consistencia eventual, en el que no necessariament ens porta a un
estat idéntic a l'estat inicial abans de comencar la transaccié. Es per aixd que no es parla del terme rollback i es
parla de compensacio.

Una SAGA és una seqléncia d'operacions que realitzen una unitat de treball especifica i que generalment es
troben intercalades entre si. Cada operacié que forma part d'una SAGA es pot "revertir' mitjancant una accié de
compensacié. La SAGA vol garantir que totes les operacions es completin correctament o s'executin les accions
de compensacié que siguin adients (per a totes les operacions executades) per revertir qualsevol treball realitzat
anteriorment.

S’ha realitzat una guia [CU_ARQO25_Transaccionalitat_i_SAGA] on es descriu el patrd SAGA.

Transaccid local Transaccié local Transaccié local Transaccié lacal
crida f * crida * * crida *
—» — — —
Serwei 1 Servei2 Servei N 1 Servei N
-— -— -— -—
I3 i i i
Errar “R._, A Errar k S gﬁ S Errar A_\N .
Local transaction Local transaction Local transaction Lacal transaction
Compensacia Compensacio Compensacid rallback

Esquema tedric SAGA amb compensacions

Document d’Arquitectura Especificacio Arquitectura Pagina 22 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

2.3.3 Casos d'Us de la capa de integracio

uc Knowledge Area Integracic /

apTimanys
CU_ARQO27 Procés
Batch
Planificador
{froum
Actors] N

aprimanys

CU_ARQDD4 Acces a capa de
distribucic REST

CU_ARGD26 Accés a serveis
negoci MJ des de sistemes

Sistema Extern

{from
Actors)

« primanys

CU_ARG028 ARG Integracio
Capa Dades - EJCAT i MJ

(from Knowledge Ares Disiribucié)

o CU_ARQO26 Accés a serveis negoci dins del cloud de justicia des de sistemes externs

En arquitectures de serveis és habitual tenir un APl Manager que faci funcions de facana dels nostres serveis cap a

l'exterior.

En l'arquitectura Canigo 3.4 + Angular 9 algunes de les comunicacions d’entrada faran us de I’Api Manager
Corporatiu IBM Api Connect. Aquest Api Manager sera la porta d'entrada de sistemes externs a Justicia que vulguin
cridar serveis interns, quan aquests sistemes que criden estiguin fora del que podria ser considerat una “xarxa o

connexié segura”

Les funcions principals de I’Api Manager seran:

1. Proveint el nostre sistema d'una capa externa de seguretat

2. Realitzant funcions d'enrutament cap a sistemes interns

Quines comunicacions no faran Us de Api Manager?

1. Comunicacions entre serveis desplegats a Openshift

2. Comunicacions cap a serveis interns a Openshift que vinguin del que podria ser considerat elements interns
com podrien ser altres aplicacions del Departament de Justicia allotjades a la Intranet
3. Comunicacions cap a serveis exteriors (Api Manager només sera porta d’entrada, no de sortida)

e CU_ARQO027 Procés Batch

Una necessitat habitual de les aplicacions és I'execucio d’un procés o tasca de manera planificada, ja sigui a uns
moments determinats o d’'una manera periddica (cada cert periode de temps).

Es va escollir ShedLock com mecanisme predeterminat per la planificacié de tasques, sense descartar altres
possibilitats com Control-M com mecanisme extern de planificacié de tasques.

Document d’Arquitectura

Especificacio Arquitectura

JUS_Canigo3.4_CloudNative v1.4.doc

Pagina23de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

S’ha creat una guia [CU_ARQO27 Processos Batch] per descriure com les aplicacions han de procedir respecte als
processos planificats.

e CU_ARQO28 ARQ Integraci6 Capa Dades

Les dades son propietaries del servei que sigui el responsable (si s’ha realitzat disseny dirigit al domini, només un
servei sera el responsable d'un determinat domini) i si un tercer necessita aquelles dades podra consultar-les via
invocacié de serveis de negoci. Malgrat aix0 existiran escenaris on no sera recomanable obtenir aquestes dades via
invocacio de serveis com per exemple:

e Volum molt elevat de dades a retornar per part del servei
e Elevat nimero de peticions al servei de consulta
o Necessitats derivades de la desnormalitzacio de base de dades

e Manteniment de la coheréncia de dades entre sistemes diferents.

A aquests escenaris, la integracié a capa de dades consisteix en realitzar una obtencié de dades, directament des d'un
repositori de dades (sense utilitzar la capa de negoci per accedir a les dades) per tal de poder comunicar aquestes
dades a un altre sistema que els rep i processa - o0 adapta - per actualitzar el seu propi repositori de dades (sense
utilitzar la capa de negoci per actualitzar les dades).

En alguns escenaris d’integracid de dades pot ser necessaria una logica de negoci per donar context a les dades
obtingudes, aixi com una logica de negoci per tal de poder adaptar la informacié a les necessitats i caracteristiques
del sistema que rep les dades i per tant poden existir etapes de transformacié o ampliacié de la informacio origen per
ser enviada amb context cap a serveis desti o interessats.

S’ha realitzat una guia [CU_ARQO028 ARQ Integracié Capa Dades] per descriure els escenaris d'integracié de dades i
les seves caracteristiques.

e CU_ARQO029 Swagger APl Manager

En aquest punt es descriu com publicar els serveis en un APl Manager a partir de la informacio de Swagger.

Per aquest objectiu, es requereix tenir préviament els serveis REST de Backend publicats a traves de Swagger, amb
aquests serveis desplegats, durant la creacid i publicacio de la APl a I’API Manager se li indicara la URL del Swagger
del servei de backend.

Document d’Arquitectura Especificacio Arquitectura Pagina 24 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

2.3.4 Casos d'Us de la capa de presentacio

Els casos d’Us d’aquesta capa son els seglients:

uc Knowledge Area Presentacié /

«auxiliary»
CU_ARQ030.4 Arbre

«auxiliary»

CU_ARQ030.5 Finestra
modal

«auxiliary»
CU_ARQ030.3 Menu

«auxiliary» V\ \ //7 «auxiliary»
) \ \ / CU_ARQ030.6 Wizard
CU_ARQ030.2 Llistats N \ ;
paginables N \ /
AR s «include» ! _ ;7
>SS «include» \ «include» _
~ J . -
T~s \ \ / -
cincluder N ' / _ ~«include»
= N \ / P
~

«auxiliary»
CU_ARQO030.7 File
upload

«auxiliary»

CU_ARQ030.1Camps J&€— — — — — — — — — — — _ _ _ _ _ _
basics «include»

«primary»
CU_ARQU030 Interficie
grafica

«include»

«primary»
CU_ARQO37 Aplicacions

«primary»
CU_ARQO36
Microfrontends

Web Progressives (PWA)

«primary»
CU_ARQ035 Monitoritzacié
capa client

«primary»
CU_ARQ032 Comunicacié
capa REST

«primary»
CU_ARQO034 Canvide
context

«primary»

«invokes»

CU_ARQO33 Propietats

transversals — /
7

Ve
Usuari Justicia e
«invokes»
(from s
Actors)

«primary»
CU_ARQO31 Java Web
Start

Administrador

(from
Actors)

e CU_ARQO30 Interficie grafica

La interficie grafica de I'aplicaci¢ client Angular 9 estara basada en els estandards Web HTML versié 5, CSS versid 3 i
llibreries JavaScript.

El disseny de la interficie d'usuari sera responsive basat en el framework CSS Bootstrap, de manera que I'experiéncia
d’usuari sigui la mateixa des de la web, tauleta o mobil. L'arquitectura, les metodologies i els components de
desenvolupament a utilitzar es defineixen en les guies de desenvolupament de frontend basades en el framework
Angular. Altres necessitats s'estudiaran de cas en cas préviament a l'inici del desenvolupament.

@ Més informacio sobre el framework Boostrap: https://getbootstrap.com/docs

Document d’Arquitectura Especificacio Arquitectura Pagina25de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e CU_ARQQ30.1 Camps basics

Com a camps basics, tant d’entrada de dades com per a mostrar informacié a I'usuari, es faran servir els controls
inclosos a la llibreria especifica per Angular PrimeNG. 9 Els camps basics inclouen camps de text, quadres de llista,
quadres combinats caselles de seleccid, botons, botons d’opcié i calendaris.

o CU_ARQO030.2 Llistats paginables

Per als llistats paginables es faran servir conjuntament els controls DataTable i Paginator inclosos a la llibreria
PrimeNG.

e CU_ARQ030.3 Menu

Per als menus de I'aplicacié paginables es faran servir els controls especifics inclosos a la llibreria PrimeNG. Els
controls de menu inclouen menus contextuals, mend vertical i menus multinivell.

e CU_ARQO030.4 Arbre

Per als controls de tipus arbre es fara servir el control especific Tree inclos a la llibreria PrimeNG.

e CU_ARQO030.5 Finestra modal

Per a les finestres de tipus modal de les aplicacions Angular es fara servir el control especific Dialog inclos a la llibreria
PrimeNG.

e CU_ARQ030.6 Wizard
Pels components de tipus Wizard de les aplicacions Angular es fara servir el control especific Accordion inclos a la
llibreria PrimeNG.

Aquest component mostra panells que poden ser col-lapsats. Es mostra un panell inicial on introduiran les dades
basiques i només es mostraran els seglients panells (passos) quan s’hagi emplenat la informacio necessaria.

Una vegada s'han guardat les dades del primer panel (pas 1) la resta de panells es van mostrant segons les dades
necessaries complimentades als panells anteriors (aix0 dependra de la logica de negoci de cada aplicacid). Una
vegada carregats els panells, sempre sera possible accedir al qualsevol panell de manera immediata.

o CU_ARQQ30.7 File upload

Per a penjar fitxers al servidors des de la capa client Angular (file upload) es fara servir el control especific FileUpload
inclos a la llibreria PrimeNG.

Document d’Arquitectura Especificacio Arquitectura Pagina 26 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e CU_ARQO031 Java Web Start

Java Web Start és un mecanisme de Java que permet executar aplicacions en local publicades en enllagos web i amb
I'habilitat d’actualitzar-se automaticament. Es va dissenyar com una tecnologia alternativa als applets pels casos on la
funcionalitat esta completament dins I'aplicacio.

Quan es descarrega, queda en la caché de Java, a I'apartat d’aplicacions i es pot tornar a executar. Hi ha la opcié de
crear accessos directes a aquesta aplicacio.

Cal tenir en compte que les aplicacions JNLP no només s'inicien des d’una URL, sind que també es mantenen
automaticament actualitzades perque cada cop que s’executa es pot comprovar si el JNLP o els JAR han canviat i
actualitzar-se. A més, com és caché java no es tenen problemes de permisos d’instal-lacid ni res.

També és possible fer pre-instal-lacions executant la segiient comanda: javaws -import -codebase file://c:/tmp
c:\tmp\prova.jnlp

Les aplicacions Java Web Start s’executen sense necessitar cap navegador i per tant no hi interactuen. Aixo fa més
dificil I'is de Java Web Start com a substitut dels applets pero hi ha els segiients escenaris de comunicacio depenent
del grau d’integracié que es desitgi.

@ Sitan sols necessitem enviar dades en una unica crida cap al servidor, aquesta es pot realitzar directament per
I'aplicacié JWS. Un parametre del jnlp podria indicar una URL on cridar quan finalitza I'accié i aquesta realitzaria
I'accid o accions necessaries.

@ Sies vol interaccié amb la pagina del navegador, es pot implementar una crida AJAX des de javascript cap a
I'aplicacio JWS. En obrir la pagina, aquesta intentaria (amb reintents i un timeout petit) connectar-se en un port
TCP predefinit, i un cop connectat, esperaria resposta. En I'aplicacié JWS, a questa connexid s’obriria en un fil
paral-lel on esperaria en un bucle que finalitzés I'accio. Quan aquesta ha finalitzat, el fil enviaria la resposta, que
la rebria el navegador.

Document d’Arquitectura Especificacio Arquitectura Pagina 27 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e CU_ARQO32 Comunicacié capa REST

Tota la comunicacié de la capa de presentacié amb la capa backend REST del servidor estara centralitzada en un
Unic servei de comunicacions de I'aplicacio. Per la seva banda, aquest servei fara servir el modul inclos a les llibreries
basiques d’Angular especific per a comunicacions HTTP @angular/common/http. Les comunicacions faran servir el
protocol HTTP/S i les dades intercanviades seran en format JSON.

Les comunicacions amb la capa REST del servidor seran asincrones i seguiran el patrd dels Observables aplicat a
fluxos de dades utilitzat a Angular (implementat a la llibreria de ‘Reactive Extensions’ o ‘RxJS’). D’aquesta forma, es
tractara tot tipus d'informacid intercanviada amb la capa REST del servidor com un flux (stream) ‘observable’ d'entrada
i de sortida, al que se li poden agregar operacions que processen les dades.

En les comunicacions amb el servidor en que requereixi autentificacid, el servei de I'aplicacié Angular incloura en el
Header de la peticio HTTP corresponent (Request) el token JWT obtingut durant el procés de login. Veure apartat
5.3.5.3 Intercanvi de JWT entre client i servidor per informacié detallada.

o CU_ARQO33 Propietats transversals

Veure apartat 4.5. Propietats transversals del sistema per a més informacid.

e CU_ARQO034 Canvi de context

En ocasions la capa de presentacio d’'un modul necessita accedir a la capa de presentacié d'un altre. Certa informacid
de context ha de ser traspassada entre aplicacions de manera transparent per I'usuari, i a més es desitja cert control
d’accés i auditoria.

En el cas de les aplicacions Angular dels sistemes de EjCat+ s'implementaran les funcionalitats necessaries per a
cadascun dels escenaris de canvi de context entre aplicacions:

1. Aplicacié Angular EjCat+ (Microfrontend) = Aplicacié Angular EjCat+ (Microfrontend).
2. Aplicacié Angular EjCat+ (Microfrontend) = Aplicacié eJCAT.
3. Aplicacio eJCAT - Aplicacié Angular EjCat+ (Microfrontend).

Document d’Arquitectura Especificacio Arquitectura Pagina 28 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e CU_ARQO35 Monitoritzacié capa client

La monitoritzacié de I'experiéncia real d’usuari al navegador (Real User Monitoring) en una aplicacié Angular (Single
Page Application) ens permet el segiient:

= Detectar i solucionar problemes d’aplicacions Angular dins del context de la carrega inicial de la pagina.

= Ajudar a les decisions de negoci mitjancant I'analisi de dades de les aplicacions Angular a través d'analisis de
les mesures obtingudes.

= Permet els desenvolupadors crear aplicacions amb un rendiment optim.

Angular proporciona una série d’eines com Router events, Component Decorators i LifeCycle Hooks, Property
Decorators i HTTP Interceptors que, conjuntament amb la utilitzacid de I'’API Web Performance APl ens permeten
d’obtenir tota la informacié sobre el rendiment de 'aplicacio respecte a temps de carrega i comunicacions.

Performance APl proporciona accés a informacié relacionada amb el rendiment per a la pagina actual en el
navegador. Es part de la High Resolution Time API, pero esta millorada per la Performance Timeline API, la Navigation
Timing API, la User Timing APl i la Resource Timing API.

Perfume.js ens permet fer servir la Performance API d’una forma molt senzilla. Perfume.js aprofita totes aquestes API
de rendiment que ens permeten recopilar metriques per a desenvolupar una comprensiéo més profunda de com els
usuaris perceben el rendiment web de I'aplicacio.

Per tal de fer servir les funcionalitats que ofereix Perfume.js i les Performance API en el context d’una aplicacié Angular
s’ha creat un modul Monitoring dins del framework ra-ng que inclou una série de serveis, decorators i interceptors que
ens faciliten la recollida de les dades de monitoritzacio en una aplicacié Angular.

Document d’Arquitectura Especificacio Arquitectura Pagina29de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e CU_ARQO036 Microfrontends

El terme Microfrontend es refereix a una aproximacié d’arquitectura de desenvolupament d’aplicacions web com una
composicié de aplicacions frontends “petites” respecte a la aplicacid sencera que es necessita construir. Les
funcionalitats es poden dividir per dominis que sén gestionats per microfrontends especifics, auto continguts i que
poden ser desenvolupats i desplegats el més independentment possible.

La solucié de microfrontends en les aplicacions Angular estara basada en una implementacié de Web components
(Custom Elements) i en concret en la seva basant Angular, Angular Elements.

No tots els moduls de I'aplicacié han de construir-se en forma de Microfrontend. Aquesta solucié s’aplicara en aquells
casos en que el desenvolupament d'un domini de negoci requereixi d’un cicle de vida diferent al de I'aplicacio
principal o bé la tecnologia o framework utilitzada sigui diferent de la de I'aplicacio principal.

e CU_ARQO37 Aplicacions Web Progressives (PWA)

Es pot pensar en una PWA com un lloc web perd que actua i es comporta com una aplicacid. La disponibilitat dels
anomenats service workers i en les APl de Cache i Push donen la possibilitat als desenvolupadors web de permetre
als usuaris instal-lar aplicacions web en el propi dispositiu, ja sigui un ordinador, tableta o0 mobil, rebre notificacions
push i fins i tot treballar sense connexio.

En el cas de les aplicacions Angular s’afegira la dependéncia @angular/pwa als projectes. Aquest procés afegeix les
llibreries, configuracions i fitxers de recursos necessaris per a implementar les funcionalitats que proporcionen les
PWA en aplicacions basades en Angular.

Document d’Arquitectura Especificacio Arquitectura Pagina30de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

3 CONVENCIONS | RESTRICCIONS GENERALS

3.1 CONCEPTES | COMPONENTS

3.1.1 Arquitectura de Referéncia

Pel que fa a les aplicacions Angular, es seguira, a nivell general, I'especificacié definida a la documentacié oficial
d’Angular definida per Google: https://angular.io/guide/stylequide

3.1.2 Serveis, Components, Frameworks, Llibreries

3.1.2.1 Frontend daplicacio

Pel que fa a la capa de presentacio, els principals components i versions serien:

Component Versi6 Descripcio
@angular/common 9.1 Directives i serveis d'Angular habitualment necessaries.
@angular/core 9.1 Llibreries basiques del framework d'Angular.
@angular/forms 9.1 Directives i serveis d'Angular especialitzades en la creacid i
gestié de formularis (forms).
@angular/router 9.1 Llibreries necessaries per a controlar la navegacio i
enrutament en el context d'una aplicacid Angular.
@angular/cdk 9.1 Representa una abstraccio de les funcionalitats centrals que
es troben a la llibreria Angular Material (necessari per
primeng).
@angular/elements 9.1 Implementacié de HTML Custom Elements per a aplicacions
Angular.
@angular/service-worker 9.1 Llibreries per a laimplementacié de Service Workers a
aplicacions Angular.
document-register-element 1.14.3 Implementacié de HTML Custom Elements.
justicia-ng 9.0 Serveis i components transversals per a aplicacions Angular
de Justicia.
log4javascript 1.4.15 Llibreria JavaScript necessaria per a la generacio de
informacio de log.
moment 2.24 Llibreria per a validar, manipular, i mostrar dates i hores.
ngx-translate 12.1.2 Llibreria per a la internacionalitzacié (i18n) d’aplicacions
Angular.
primeng 9.0 Col-leccié de components d'interficie d'usuari per Angular,
ra-ng 9.0 Framework per a propietats transversals d’Aplicacions
Angular.
rxjs 6.5.4 Conjunt de llibreries en JavaScript per desenvolupar
programes asincrons i basats en events.
zone.js 0.10.2 Llibreria necessaria per a Angular que gestiona el seu context
d'execucid.
perfume.js 51.0 Llibreria per a la monitoritzacio del rendiment web.
ngx-build-plus 9.0.6 Llibreria per a estendre les funcionalitats d’Angular CLI.
Document d’Arquitectura Especificacio Arquitectura Pagina 31 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

3.1.2.2 Back-end daplicacio

El backend de 'aplicacio estara principalment basat en la versié 2.1.8 del Framework Spring Boot i en la versié 3.4 del
Framework Canigé del CTTI.

Les llibreries més rellevants de backend sén:

Component Versid Descripcié
canigo.core 4.2.0
canigo.web.core 2.2.0 L o
: Llibreries base del Framework Canigé 3.4
canigo.web.rs 2.2.0
canigo.persistence.mongodb 2.3.0
spring-boot-starter-logging 2.1.8 | Spring Logback
spring-boot-starter-web 2.1.8 | Spring Web MVC
spring-boot-starter-security 218
spring-boot-starter-oauth2- 918 Spring Security amb OAuth2 Resource Server
resource-server
spring-data-mongodb 218
spring-boot-starter-data- 218 Spring Data MongoDB
mongodb o
mongodb-driver-legacy 3.12.3
mongodb-driver-sync 3.12.3 | Drivers de MongoDB adaptats a 3.12, compatibles amb Canigd
mongodb-driver-core 3.12.3
springfox-swaggerz 2.1.0 Llibreries per suport a Framework Swagger 2
springfox-swagger-ui 2.7.0
spring-boot-starter-actuator 218
mlcrometer-CQre 1.16 Endpoints de metriques Actuator i exportador en format Prometheus
micrometer-registry-
1.1.6
prometheus
opentracing-api 0.33.0
opentracing-spring-jaeger- 312
w.eb—start.er OpenTracing, gestio distribuida de logs en contenidors
opentracing-spring-cloud-
0.3.12
starter
jaeger-client 1.2.0
spring-cloud-stream 2.1.0
spring-cloud-starter-stream- 210 Publicaci¢ i consumicio de Kafka Topics (operacions asincrones)
kafka o
shedlock-spring 4.14.0 | Planificador de tasques en cloud
lombok 1.18.8 | Simplificacié de codi
jus-canigo3.4-cloud-lib TBD Llibreries de components comuns
jus-canigo3d.4-cache-cloud-lib TBD Llibreria de components del CU_ARQ13 - Cache
justicia-jasper-fonts 1.0.0 | Fonts més comuns utilitzades per jasper-report

3.1.3 Bones Practiques de la Tecnologia de Referéncia

Pel que fa a les aplicacions Angular, es seguiran les bones practiques especificades a la documentacié oficial
d’Angular definida per Google: https://angular.io/guide/styleguide

Document d’Arquitectura Especificacio Arquitectura Pagina 32 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥UL¥ i Tecnologies de la Informacié

3.2 ALTRES CONVENCIONS | RESTRICCIONS GENERALS

3.2.1 Normatives de programacio

Al projecte es defineixen les seglients normatives sobre la capa de negoci:

¢ Java anguage specification https://docs.oracle.com/javase/specs/jls/se8/html/index.html

¢ Arquitectura CTTI APIs RESTful: millors practiques https://canigo.ctti.gencat.cat/blog/2016/01/api/

3.2.2 Gestid de la configuracid

Els entregables es deixen generalment a un gestor documental del Dept. anomenat PORTIC, malgrat aix0, aquest punt
s’ha d’acordar per cada projecte.

La entrega de codi a client, la construccié i el desplegament des fara segons normatives del SIC corporatiu,
consultables a https://canigo.ctti.gencat.cat/sic/

Build fest Deploy
Design Release Operate

Codii Construccio
configuracid aplicacio

R o)

[qé i Jenkins Pipeling, Remedy, eines CPD
inaris . \
~ 25 bmc - @

Desplegament Notificacions

|¢Aunmatnzacid [® codgifort [l Arefactes

3.2.3 Procés de desenvolupament

Per a entregables del client, es seguira la metodologia MQS pels entregables (gestié de projecte i enginyeria del
software). Hi ha plantilles de client definides per a cada tipus d’entregable.

3.2.4 Eines de Desenvolupament i Area de Treball

S’ha generat una guia per tal de poder preparar un entorn de desenvolupament per part dels desenvolupadors.

S’han d'utilitzar les eines acordades per part dels proveidors amb CTTIl i el Departament de Justicia a partir de les
definides de manera corporativa a les webs oficials (https://canigo.cttigencat.cat/sic/ i MQS-Eines:
https://qualitat.solucions.gencat.cat/eines/).

Document d’Arquitectura Especificacio Arquitectura Pagina33de 115
JUS_Canigo3.4_CloudNative v1.4.doc

HTIY Generalitat de Catalunya
Centre de Telecomunicacions
¥UL¥ i Tecnologies de la Informacié

4 ESPECIFICACIO D’ARQUITECTURA

41 VISTA GENERAL

La vista general mostra les parts del sistema més importants des del punt de vista funcional i técnic, a alt nivell. Mostra
com les parts del sistema son distribuides a través dels elements de la infraestructura técnica (Tl).

El seglient diagrama mostra les capes i tecnologies a alt nivell més rellevants de I'arquitectura JEE del Departament

Internet Intranet
Sistemes y:
. Informacio cap
d’informacio Sistemes d’informacio i
a sistemes
Internet Intranet
externs
Servels i Servels ?
H c Slstamas = H
5,':::::: Loop APIManager e SEE——- L E
Backoffice Event BUS
= r 3 Corporatiu
LE.. Serveis Transversals | Autostore
2
& =)
g% Serveis Extranet Serveis Intranet
O Docker @ Spring Boot # Docker @ Spring Boot
. : . §§ katka

Gestor documental Basede dades

. Repositori
Documental
"mnngol’)ﬂ.

Repositori
= Transaccional
‘ mongo DB.ORACLE

Document d’Arquitectura Especificacio Arquitectura Pagina 34 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

Centre de Telecomunicacions

m Generalitat de Catalunya
¥UL¥ i Tecnologies de la Informacié

El seglient diagrama mostra el mapa de serveis

Eackoffioe
£ Serves Tiamversahs Taean
i3
i <
B Sorveds Ferranet Serveds infranet B
O plbiy e

Documental

D §monsens.

Transaccional
® mongoDB. ORACLE'

-
G BERHAT
BENS LI Serveis Extranet N Serveis Intranet
Logging & Tracing
Sistema Sistema Sistema Sistema
‘.f ; l— Jm:mf.e ﬂ'mff)j'ma\:lé d‘mlﬁi.cmnuid d’mf:::uclé zgfﬁ
= =) v | |22 &9 *.2
{Sicriiorng A blers) 4 T 4 1
P ¥ i 2 £ 2
) 1 Servei ree Servei Serie
L mg. = [r_g.“«a] nznen] [.,g,.q‘] &2 o‘i}o
- N ¥ ¥ ¥ ¥ o
¥ ¥ i =
M | g = a
= &R £ .
. >, X L3
=) X ¥
) servet semvet
Predis [+ 0| 2o
| L
\
Autastare
« Repositori Repositori

<

Els serveis al sistema es comunicaran entre si via invocacio de serveis. La comunicacio de I'exterior cap a negoci del

sistema es fara via APl Manager.

Document d’Arquitectura

Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina35de 115

HTIY Generalitat de Catalunya
Centre de Telecomunicacions
¥UL¥ i Tecnologies de la Informacié

4.2 VISTA DE CONTEXT

La vista de context descriu el sistema en el context de tots els seus sistemes veins.

En aquest punt s’especificara com la arquitectura es relaciona amb sistemes externs, tant en una direccié en relacions
gue son d’entrada al sistema, com en I'altra direccié on les relacions son de sortida del sistema.

4.2.1 Invocacié des de sistemes externs cap a aplicacions internes

Entendrem per sistemes externs:
1. Aplicacions EJCAT tradicionals desplegades a servidors WebLogic
2. Altres aplicacions o sistemes d’informacié al Departament de Justicia
3. Aplicacions o sistemes externs al Departament de Justicia

La manera com qualsevol dels sistemes que accedeixi per internet realitzar invocacions a les aplicacions del sistema
EjCat+ sera a través del APl Manager de la nova arquitectura.

L’API Manager sera el punt d’entrada des d’Internet per a qualsevol peticié externa que arribi al sistema.

Internet |
Altres ¥
sistemes APl Manager
Intranet
externs 1

EJCAT

i
TEMIS » 0SB | :
Intranet I

i

;

o@®®®©- @

2o may
Servel 1 Servel 2 Servel3 Servel 4 Servel N 0
Sisterna d’informacié

Gracies a I’API Manager podrem tenir un tnic punt d’entrada al sistema:

Centralitzant temes de seguretat

= Enrutament cap a serveis finals

Definicié de quotes i assignacio de recursos

Gestié multi-tenant

Document d’Arquitectura Especificacio Arquitectura Pagina 36 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

4.2.2 Invocacio des d’aplicacions EjCat+ cap a sistemes externs

Els mecanisme preferent quan s’hagi de consumir un servei extern al sistema sera consumir una APl Rest. En sistemes
més antics que no puguin oferir serveis REST i s'hagin d'accedir amb altre tipus de protocol es podra fer Us de SI
(Spring Integration). Mitjangant Sl es podran crear peces (serveis d’integracid) encarregades de rebre peticions REST
dels serveis interns i transformar aquestes peticions cap als protocols necessaris segons la plataforma o aplicacié que
s'hagi de consumir.

Veure la guia [CU_ARQO12_Interaccié_cap_a_sistemes_externs_(capa_negoci)] per més detall.

e pod

©
jus-modulA e pod

Sistema extern
jus-int-ws-1 ‘

0 pod
@ ius-ll;nt—\;vs—l

jus-modulB

Document d’Arquitectura Especificacio Arquitectura Pagina 37 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

4.2.3 Interficies amb sistemes interns

Considerarem sistemes interns totes aquelles aplicacions o serveis que segueixin arquitectura Canigd 3.4 Cloud
desplegats en el marc del mateix sistema d’informacid

Cada aplicacio/servei és propietari de les seves dades (al igual que en I'arquitectura CMO) i si necessita dades d’una
altra aplicacid/servei, les ha d’obtenir invocant el servei de negoci que publiqui cada aplicacio per a qué li faci arribar
les dades sol-licitades. En casos excepcionals pot necessitar disposar directament d’aquestes dades externes, encara
gue no és la solucié recomanada. Dins aquest mateix capitol explicarem aquests dos casos i quan pot estar justificat
accedir a dades externes sense invocar a un servei de negoci, tal i com ja passava a I'arquitectura CMO.

L’'arquitectura permet les seglients tipologies d'interficies entre aplicacions internes:

e Comunicacié interna capa presentacié — capa distribucié : (online / sincron) Serveis REST amb parametres
JSON, per a comunicacié front-end — back-end dins la mateixa aplicacio

e Comunicacio entre serveis interns del sistema d’informacid

O A la capa de presentacié: (online / sincron) Canvi de context entre les capes de presentacié de dues
aplicacions o microfrontends, mitjangant protocol HTTPS

O Alacapade negoci: (online o batch)

= (sincron) La capa de negoci de I'aplicacié A invocara a la capa d'integracié de l'aplicacié B
mitjangant invocacié de serveis via REST amb I'existéncia intermédia d’un Service Mesh per
enrutar les peticions cap al desti correcte

= (asincron) La capa d'accés a dades de I'aplicacid A enviara un missatge a un servidor Kafka
que sera recollit de forma asincrona per les aplicacions B que estigui subscrites al topic en
questid

O Ala capa de dades: (online / sincron) Cada aplicacié o servei només podra accedir a dues bases de
dades diferents:

= [’accés habitual sera a la seva BBDD local del servei on tindra totes les dades necessaries per
donar resposta al negoci, ja siguin dades propies o bé dades desnormalitzades d’altres serveis
(normalment de taules mestres, ocasionalment de negoci).

= En cas que per necessitats de negoci un servei concret hagi de fer creuament de dades amb
col-leccions d’altres serveis tindra la possibilitat d’anar a la BBDD de consultes on disposara de
les col-leccions per a fer aquests creuaments o podra trobar col-leccions especifiques on ja hi
hagi aquestes dades creuades. Aquest escenari no és el recomanable donat que crea
dependéncies de N serveis contra una mateixa BBDD, la qual cosa és un anti-patré
d’arquitectures de serveis on cerquem la independéncia en el seu cicle de vida. Per tant el seu
Us ha d’estar justificat.

4.2.3.1 Escenaris d’integracio a capa de dades.

Tal i com es ja va indicar les dades sén propietat i responsabilitat d’un servei i si algu necessita aquelles dades podra
consultar-les via invocacié de serveis de negoci. Existiran escenaris on no sera recomanable obtenir aquestes dades
via invocacid de serveis com per exemple:

Document d’Arquitectura Especificacio Arquitectura Pagina 38 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Volum molt elevat de dades a retornar per part del servei

Elevat nimero de peticions al servei de consulta

Per aquests escenaris on les invocacions via servei de negoci no sigui recomanable, es tractara de garantir que les
dades estan alla on son necessaries per donar resposta al negoci. Quan una dada d’un servei hagi d’estar disponible
també per a altres, pot ser necessari fer-la arribar a la resta de serveis que la necessitaran. En aquest sentit hi ha
diverses possibilitats com poden ser la replica de dades (desnormalitzacié entre serveis) o I'accés a una base de
dades global de consulta.

A aquests escenaris mencionats, si no son recomanables les invocacions via servei s’hauran de seguir les
recomanacions de la guia [CU_ARQ028 ARQ Integracié Capa Dades] d’integraci6 a capa de dades on s’expliquen els
diferents escenaris i eines que es poden utilitzar en funcié del les caracteristiques de la integracio.

4.2.3.2 FEleccio d'estrategies d'integracio

Desnormalitzacio

Al treballar amb MongoDB existeix un canvi de paradigma respecte a les BBDD relacionals. En les BBDD
relacionals la informacid se separa en diferents taules i aquestes taules es relacionen entre elles mitjancant
FK. Quan arriba el moment de consultar dades a la BBDD es fan consultes i si cal, a la consulta, es relacionen
les taules pertinents per obtenir les dades desitjades. Amb BBDD MongoDB la idea ja no és aquesta doncs
les dades s’han d’'emmagatzemar de manera que la seva consulta estigui optimitzada.

Quan una aplicacié existent passa a d'utilitzar BBDD relacionals a BBDD no relacionals la idea no és agafar
les taules del sistema i canviar-les per colleccions per replicar un model com I'existent. El que cal fer és un
analisi més profund a nivell de negoci per saber quines entitats tenen sentit i com seran consultades pels
diferents processos de negoci.

Les dades son susceptibles de ser desnormalitzades dins les colleccions que en fan Us. D’aquesta manera
passem d’un escenari on tenim, per exemple, dues taules relacionades a un escenari on tenim una col-leccio
que dins, com atributs de la col-leccio, té les dades desnormalitzades i per tant el que abans era una consulta
on hi havia dues taules implicades ara passa a ser una consulta sobre una col-leccié que ja conté les dades
que necessitem.

Embedding Documents
MongoDB Schema Design

Peaple Peaple
{ {
_id: 1, _id: 1,
name: ‘Peter’, name: ‘Peter’,
city: ‘Salamanca’ city: ‘Salamanca’,
1 ,
}
Document d’Arquitectura Especificacio Arquitectura Pagina 39 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

A MongoDB sera interessant aquest tipus d’estratégia donat que encara que es poden fer joins entre
col-leccions podria afectar negativament al rendiment. Per estudiar els criteris recomanats dins un modelat
orientat a documents, cal consultar la guia [CU_ARQ010.1 - Desnormalitzacié i modelatge del model de
dades].

Tot I'anterior aplica normalment a nivell intern de la base de dades MongoDB que utilitza el nostre servei.
Perd dins aquest capitol d’arquitectura d’integracid, estenem el concepte anterior de desnormalitzacio, i
incloem 'escenari on una dada cal actualitzar-la dins una col.leccié externa al nostre servei, és a dir, a la base
de dades MongoDB d'un o varis serveis externs. Aquest escenari es produira normalment amb dades
mestres, poc volatils i accessibles molt freqlientment per tothom. En situacions excepcionals es podria
considerar incloure altres dades de negoci, perd sempre amb justificacio i autoritzacidé dels comités
d’aprovacid d’arquitectura (interns i/o de client), donat que sempre que sigui possible cal obtenir les dades
via invocacio de serveis de negoci.

Quan una dada canvia en origen (en la base de dades responsable d’aquelles dades), si hem escollit
estrategia de desnormalitzacid amb serveis externs, cal fer arribar el canvi d’aquella dada a totes les
col-leccions de totes les bases de dades on estigui desnormalitzada.

e BBDD Consulta
Aquest és un cas particular encara que especial de dades replicades.

La BBDD de consulta sera una BBDD consultable pels serveis que ho requereixin on hi haura dades de les
diferents BBDD dels serveis. Aquestes dades poden estar normalitzades o replicades i les podrem trobar com
a col-leccions independents amb estructures iguals o similars que a les bases de dades dels serveis, o bé les
podem trobar amb altres estructures. Podrem trobar dades desnormalitzades de diferents col-leccions
agrupades en una, o també grans col-leccions que permetin obtenir d’'una tacada conjunts de dades de
diferents serveis en una sola consulta.

Aquesta BBDD permetra realitzar consultes creuant diferents negocis.

Document d’Arquitectura Especificacio Arquitectura Pagina 40 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

4.3 ARQUITECTURA DE SEGURETAT

Els requeriments de seguretat determinats pels seglients requisits no funcionals

Aix0 és tradueix, a nivell d’arquitectura;

RNF CU_ARQ associat

Proveir d’'un mecanisme d’autenticacié pels | CU_ARQOO1_Autenticacid Intranet
accessos al sistema des d’Intranet CU_ARQO002_Autenticaci¢ Internet

Proveir d’'un mecanisme de autoritzacio pels
accessos al sistema

CU_ARQO03_Autoritzacio

4.3.1 Nivells de seguretat

Les aplicacions son responsables de la seguretat i 'accés sobre les seves funcionalitats i sobre les dades que manega
0 exposa. La seguretat és un concepte transversal a les funcionalitats i s’ha d’incloure al disseny de la aplicacio. El
principi mestre de la seguretat es el del “minim privilegi” que consisteix en que per defecte no es concedeix accés a
cap funcionalitat sense un permis explicit que garanteix que només qui ha d’accedir, accedeix.

Definim la seguretat en diferents nivells:

e Relacionat amb el context de la aplicacio (nive// 0 de seguretat):

0]

0]

modificacié dels permisos per defecte per administrar els components associats a la aplicacio que
son responsabilitat d’ella; per exemple, si a un contenidor tenim un ANginx o un 7omcat al que es
desplega la nostra aplicacid, s’han de modificar els permisos per defecte per altres desconeguts
pels desenvolupadors. Ho mateix al que es refereix als usuaris roof dels sistemes operatius dels
contenidors. A aquest nivell es troben les propietats definides com “secrets’ d’Openshift que
permetin treballar sense tenir que coneixer els usuaris i contrasenyes definides als entorns
productius. CTTI indica que s’han d'utilitzar imatges publicades al seu repositori corporatiu harbor
donat que es troben certificades respecte a la seva seguretat per CESICAT

Seguretat associada a elements externs a la aplicacio: la aplicacié no és responsable de si hi ha un
Firewall que evita I'accés a les seves serveis exposats, o d’un filtre de continguts extern, ... pero una
vegada té coneixement de la seva existéncia, si que s’ha d’adaptar per tal de donar servei; pot-ser
ha de fer un canvi de port, demanar una excepcié al Firewal/o al filtre de continguts, ...

e Relacionats amb I'accés a les funcionalitats (n/ve// 7 de seguretat):

(0]

Dins de les seves possibilitats, una aplicacié ha de tractar de garantir que no es produeix
“impersonation’ es a dir, que un usuari es pugui fer passar per un altre.

= |a utilitzacio d'un foken JWT signat i comprovat sobre el Proveidor d’ldentitat permet
obtenir dades “fiables”. A les aplicacions Spring configurades per fer aquesta validacio del
foken, les dades incloses al context de seguretat es poden considerar “fiables”. Es
responsabilitat de la aplicacio utilitzar aquestes dades per validar que un usuari no tracta
de realitzar accions en nom d’un altre.

= Una aplicacié ha de superar una auditoria de I'organisme encarregat de la seguretat al
client abans de poder utilitzar-se en entorns productius. A la Generalitat es ho realitza
habitualment CES/ICAT que participa a les “fase O dels projectes i realitza una auditoria
sobre la aplicacié a un entorn no productiu (preproduccio generalment). Aquesta auditoria

Document d’Arquitectura Especificacio Arquitectura Pagina 41 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

fa una comprovacié dels mecanismes d’explotacié de vulnerabilitats més greus o habituals
ales aplicacions de tipus Web.

0 Si una aplicacié exposa funcionalitats, al disseny s’ha d’'indicar que han d’acomplir els usuaris per
poder utilitzar-les:

= Sj és possible un accés public: per exemple accés a funcionalitats exposades a una web
publica a internet, o el sistema de /ogin.

= Sjés un accés pubic per tots els usuaris del sistema: es necessari que 'usuari hagi fet /ogin
al sistema i no li cal més privilegis.

= Si és només un conjunt d’usuaris ho han de poder utilitzar: definir al disseny que han
d’acomplir aquests usuaris: pertanyer a un grup o tenir una caracteristica, etc... aquesta

decisio es pot realitzar sobre les dades de seguretat de I'usuari (Context de seguretat), fent
validacions sobre les dades rebudes amb altres dades propies de la aplicacio, etc...

= | esvalidacions de seguretat d’aquest nivell es fan als components que s’encarreguen de la
comunicacié amb capes superiors, normalment els AEST Controllers.

e Relacionats amb les dades (n/ve// 2de seguretat):
0 Unusuari pot pertanyer a un grup autoritzat a una funcionalitat perd no tenir accés a la visualitzacio
0 execuci6 de totes les accions associades a aquesta funcionalitat. Es responsabilitat de la aplicacid
verificar que cada usuari concret només pot veure i executar aquelles accions sobre les que te

privilegis.

0 En moltes ocasions aquest nivell de seguretat s’ha de “programar’ com part de les consultes.
seleccié de les dades del propi usuari, o seleccio de les dades sobre aquelles dades funcionals a
les que l'usuari ha de tenir accés: “duna unitat sobre la que 'usuari té permisos”. Normalment com
forma part de com s’accedeix a les dades, aquest nivell de seguretat esta implementat a les
consultes de les dades, als DAO.

O Les dades exposades cap al context també s’han de verificar (/ogs exposats, per exemple),
metriques, etc, per tal de no mostrar informacid “sensible” sense la proteccié adient.

Al definir les comunicacions entre components del sistema s’ha de tenir en consideracié que:

e Comunicacions entre serveis del mateix sistema d’informacié que es trobin desplegats al mateix namespace
no s’hauria de passar per I'’API Manager.

e Comunicacions entre serveis intranet no haurien de passar per Api Manager
e Comunicacions entre serveis del propi Departament de Justicia no haurien de passar per Api Manager
e Comunicacions amb origen intranet en altres departaments caldria valorar si han de passar per APl Manager.

e Comunicacions amb origen internet haurien de passar per Api Manager

4.3.2 Descripcid tecnica de la solucié de seguretat

e Integracié amb GICAR

El diagrama logic d’integracié amb GICAR és el seglient:

Document d’Arquitectura Especificacio Arquitectura Pagina 42 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Main app angular

flogin
S Redireccié autenticacié GICAR
Jus-apache-shibboleth _ i GICAR
GICAR response headers
J<portal>/apl/login
{gicar headers)

Jus-portal-service

L’agent de Shibboleth amb la configuracié pertinent per autenticar als usuaris contra als directoris corresponents de
GICAR per Justicia, en aquest cas, de la Intranet, amb les credencials que tingui disponibles a tal efecte. (usuari i
contrasenya, targeta criptografica, certificats...)

Els moduls Portals de la Intranet o la Extranet estaran configurats com destinataris de les operacions d'autenticacio, i
seran els responsables de generar les autoritzacions pertinents en forma de tokens JWT.

No es contemplara, de moment, possibilitat de contingéncia en cas que GICAR no es trobi actiu.
e Autoritzacié amb tokens
Es basa a I'autoritzacié en tokens JWT en format OpenlD Connect (OIDC).

Un cop rebuda l'autenticacié correcte de I'usuari, el portal del sistema adient haura de recollir del corresponent
component de gestid d’usuaris la resta d’informacié necessaria de I'usuari connectat.

Per generar els tokens JWT utilitzarem la funcionalitat de /dentity Provider Oauth? del producte Keycloak.
S’hauran de definir diferents tipus d’autoritzacions, segons cada tipus de destinatari:

e Usuari d'intranet o d’extranet (per exemple, grant_type: client_credentials)

e Sistema extern (grant_type: client_credentials)

A partir d’aqui, la informacid rellevant de I'usuari s'enviara com parametres a les crides OAuth2 (/access_token,
/refresh_token), i quedara incorporada dins el payload del token, en forma de c/aims.

Finalment, la resposta sera aquest token JWT en format OIDC, que els moduls transferiran a les aplicacions desti per
poder autoritzar a I'usuari connectat.

Document d’Arquitectura Especificacio Arquitectura Pagina 43 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

{authfrealms/ejcat/protocol/openld-connectitoken

/<usuaris>/apl/userinfo (grant_type=cllent_credentlals)
{user_id) {user claims)
| (9 OAK
------------ -+ Jus-portal-service D e
User claims JWT + refresh token
sendRedirect +
| Cookies {JWT + refresh)
>
Jus-usuaris-service Microfrontend angular

Un cop generat el token, qualsevol peticid a les aplicacions desti hauran d’incloure la capcalera:

Authorization: Bearer + <token JIWT>

El format del token OIDC sera el seglient:

{
"aud": .
"sub": "XXXXX",
"application”: ...,
"scope": ...,
"iss": "https://...keycloak.justicia.intranet.gencat.cat/.../openid-connect/token",
"tierInfo": ...,
"keytype": ...,
"subscribedAPIs": ...,
"consumerKey": ...,
"exp": 1593519921,
"iat": 1593516321,
"jtit: xxx,
"userInfo": {

"paraml”:"valuel",

Tots els serveis incorporen una capa d’Spring Security, configurada per validar en cada peticié REST el token JWT
rebut. Al estar en format OIDC, no sera necessari que en cada crida el modul tingui que invocar al proveidor
d’identitats per desxifrar i validar el token.

Dins la configuracié aportada en el modul ja s’incloura un endpoint OIDC per recollir la clau publica del certificat amb
que el proveidor d'identitats ha signat cada token, d’aquesta manera els moduls els podran validar de forma
autonoma, eliminant requests innecessaries al sistema. Aquest endpoint s’exposa en format JWKS (JSON Web Key
Set).

Si l'autoritzacid es correcte, Spring Security permetra executar la crida REST al servei generant un Security Context
dins Spring amb la informacié de I'usuari connectat. Aquesta informacio s’extreu dels c/aims inclosos en el token, tal

com s’ha comentat préviament,

Si el token és invalid, o esta caducat, es retornara la corresponent excepcio de seguretat, que s’acabara transformant
en un error 407 . Unauthorized.

Des del frontend es podra invocar un endpoint de refresc de token, en cas que s’apropi la seva data de caducitat.

Document d’Arquitectura Especificacio Arquitectura Pagina 44 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

F

o) LOAK

JWKS
JfmodulXXX/fapl/... + verification
Auth Bearer+ JWT
Microfrontendangular =T Jus-modulXXX-service
200 OK/

401 unauthorized

Com a T-Components per a la gestio de I'autoritzacio a s’inclouen:
e JusticiaAuthenticationEntryPoint: Gestio de la resposta davant dels accessos no autoritzats a I'aplicacio.
e JusticiaCryptoHelper: Encriptacié de dades amb un parell de claus publica/privada
e JusticiaCustomEncoder: Codificacié de payload entre frontend i backend per dades a protegir

o JusticiaGrantedAuthoritiesExtractor: Conversio de token JWT en un Security Context d’Spring

Document d’Arquitectura Especificacio Arquitectura Pagina 45 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

4.4 ARQUITECTURA PROCESSOS PLANIFICATS

El producte estandard per la gestié dels processo planificats sera ShedLock als projectes del departament de Justicia.

Aquest producte permet la planificacié de tasques als pods amb control per evitar execucions simultanies de la
mateixa tasca per les diferents instancies en execucio.

o) N\
@ jus-servei

<Configuration>
Shedlock

<Method>
—» @5Schedulled
@SchedulledLock

5 .

RED BAT
0 OPENSHIFT

L] mongoDB.

Document d’Arquitectura Especificacio Arquitectura Pagina 46 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

4.5 PROPIETATS TRANSVERSALS DEL SISTEMA

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Tota arquitectura té propietats transversals que ha de resoldre. Per tal de no augmentar en excés la quantitat
d’informacié inclosa en aquest document, aquestes propietats es descriuran dins les diferents guies de frontend. A la
guia [CU_ARQ_32-33 - Capa de presentacid (general)] es diferenciaran les propietats transversals de la capa de
presentacio de la resta de capes.

Les propietats transversals per a la capa de presentacié (Angular) que es descriuran la guia [CU_ARQ_32-33 - Capa
de presentacié (general)] :

Les propietats transversals que es descriuran de la resta de capes son:

Document d’Arquitectura

Autentificacid i seguretat
Configuracié multi-entorn
Internacionalitzacio
Gestio d’errors

Cache

Gestio de I'estat (components 'Stateful')
Context d'usuari

Gestié d’events
Generacié de Logs
Navegacid i enrutament
Microfrontends

PWA

Monitoritzacid

Gestié de Transaccions

Gestié d’Excepcions

Gesti6 de la sessié d’usuari
Validacions a capa client i servidor
Logging

Caching

Configurabilitat

Internacionalitzacio

Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 47 de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5 VISTES DE L’ARQUITECTURA DE REFERENCIA
5.1 GENERAL

La vista general mostra les parts del sistema més importants des del punt de vista funcional i técnic, a alt nivell. Mostra
com les parts del sistema son distribuides a través dels elements de la infraestructura técnica (TI).

El seglient diagrama mostra les capes i tecnologies a alt nivell més rellevants de I'arquitectura JEE del Departament:

Document d’Arquitectura Especificacio Arquitectura Pagina 48 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

Generalitat de Catalunya
Centre de Telecomunicacions
i Tecnologies de la Informacid

(Il

5.1.1 Vistalogica

mmmmr e b -
F a FEN ol -

.lt-p-ﬂﬂ'lﬂ-a-:dj I“.-

Aquest diagrama mostra les principals tipologies de components que conté cada aplicacid. Alguns elements de tipus
T-Component, per facilitar la comprensio, no s’han inclos en aquest diagrama, encara que es fara referéncia en altres
apartats d’aquest document.

Tampoc s’ha inclos dins el diagrama, pel mateix motiu, la referéncia a tota la capa del framework Canigd que dona
suport a la resta de capes d’aplicacié. Aquesta dependencia es pot observar a I'apartat Vista d'implementacio.

Document d’Arquitectura Especificacio Arquitectura Pagina 49 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

HTIY Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

5.1.2 Vista de desplegament

5.1.2.1 Entorn de Produccid (JUPRO)

La vista de desplegament descriu les configuracions dels components hardware on s’executa el sistema. Documenta
els nodes, que representen tant entorns d’execucié (servidors amb certa capacitat de processador i memaria) com
software installat en ells (servidors d’aplicacions, servidors web, base de dades, etc.)

El diagrama indica també els artefactes que formen cada aplicacio, i com es fa el desplegament de cada part al node
corresponent.

Disposarem d’entorn d’Integracio(INT), de Preproduccié (PRE), de Produccid (PRO) i de Formacio (FOR)

Els entorns de PRE i PRO tindran la mateixa configuracio.

L’entorn de INT tindra els mateixos components perd no caldra garantir alta disponibilitat ni ser un entorn igual a PRO
i per tant és susceptible de ser més reduit que PRE i PRO

L’entorn de FOR compartira maquinaria amb PRE per estalviar costos i per tant tindra la mateixa configuracio.

A continuacid detallem la vista de desplegament de I'Productiu (PRO) on es mostrara dos tipus d’informacio: vista de
desplegament logica i infraestructura hardware.

Client Pc Intranet

|
1
1
|

e ———
1
“CxecutionCnvironment” |
WebBrowser !
|
1

i
1
: Client Pc Internet
H
'
'
'

“xacutionCnvironment”
web Erowser

'
' |

4]
1 'l |
H 1
]
' “API Manager” !
H 1

]
Ly ’
HT[TPS
P e it e el

4
1
1
1
1 - "
1 “ExecutionEnvironment”
1 a
i Openshift
1
1
1 “cxeculicntnvironment”
1 Openshift Contziner Manager
1
: “Openshiftlayers”
' ha <Scrvices, “Routings,...
1
1
1 HTTP
1
1 “ icnEnyironment’(Nanespaces)
1
1
1
1 “EXecutionkenviropment”
: (pons)
1 v
1 i
: “EXeCUtionErviranment” “Execution “EXecutionEnyironment”
' Canfainer Environment Container
1 "]
: TTP Containe! m_l_l Al o TR Container®
] image image
, | s
1
' | |
1
1

A
OracleDriver MongoDB Driver A ¥ Redis DriVEf"O[p)eBﬁsift”

“ym’ VMY

e e e m e m—————————

Document

—
“Exccution
Environment”
HCP
“Execution
Environment”
Nodes HCP

= W
Al
2
“ExeculionEnvironment” “ExeculivnEnvitonment” “EXecutionEnvironment”
Oracle Datakase MonzoDBCluster4.2 Redic5

“ExzcutionEnvironment” “ExecutionEnvironment” “ExecutionEnvironment”
Nodes Oracfie NodasMongo Containar
Oracle @ Mongo ﬂ Redis ﬂ
Databasc Database Database
Schema Schema

d’Arquitectura

Especificacio Arquitectura

JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 50 de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Podem observar les seglients caracteristiques al diagrama anterior:
* Distingim diferents tipus de client:

O un client de tipus web, on comencara la navegaci6 a través del browser. Segons el tipus de client
accedira a través d’un APl Manager cap la plataforma Openshift o accedira directament.

0 un client de tipus aplicacid (exclusivament un altre servei del sistema) que podra accedir a la logica
de negoci mitjangant una crida a les funcionalitats del servei desti.

0 altres sistemes externs que vulguin accedir a un modul de Justicia.

e El contingut estatic no es desplegara a aquests servidors, s’haura de desplegar al contenidor corresponent a
I'Openshift.

e |’API Manager redirigeix les peticions dels Clients cap a I'Openshift

e Els containers serveixen els recursos de presentacid (Angular) i a ells es desplega la part estatica de
I'aplicacio (imatges, estils, javascript d’Angular, etc.).

¢ Als contenidors es despleguen els artifacts amb les aplicacions.

« Al servidor de HCP es poden instal-lar documents, estructura de carpetes, etc, mitjangant I'API
exposada pel servei GDO+.

Document d’Arquitectura Especificacio Arquitectura Pagina 51 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.1.3 Vista d'implementacid

La vista d'implementaciod descriu la organitzacié dels elements d’aplicacié des del punt de vista del desenvolupador.
5.1.3.1 Organitzacio del projecte, capa presentacio

La vista d’'implementacié de la capa de presentacié es descriu a I'apartat Vista d'implementacié de la capa de
presentacio.

5.1.3.2 Organitzacio del projecte, serveis

Pkg implementation View : Target deployable /

servei jar

2 pomml

src.main.java.cat.gencat.justicia.<aplicacio>.project
= ProjeciApplicalion_java

configuration contraller mongodb

= <aplication>WebSecurityConfig.java £ <endpointi>Controlier java £ JusticaMiongoConfig.java
2o+ B <endpoinl 2EConloller java .
domain

aggregations
B3 SMC.Main.resources
A T <apprepation>Output lype java
kafka Service I__ applicilion.yml
- + e
KafkaListener java Kalkal islener java
collections

[T

KalkaSlreums v KalkaSlreams java

1]

= <serveixClacollectiont.java

(41}

model impl

fields

= KafkaMessape java KalkaMessage fava

=
2 =wserveiCllield==collechionsjaa

A continuacio es descriuen els subsistemes principals del servei i la seva funcio:
e Subsistema configuration: Conté informacié de configuracié de Swagger i Seguretat
e Subsistema controller: correspon a la capa de distribucié de la Vista logica de I'apartat 5.1.1. En els projectes
Canigo 3.4 Cloud en aguesta capa web només exposa I'’API de serveis RESTful.. Contingut:

0 REST Controllers

o Subsistema model: Conté les interficies i classes que han de ser accedides des de la resta de capes logiques.
Dins d'aquest subsistema no pot haver-hi logica de negoci. Contingut:

0 Domain Model objects, que no requereixen de persistencia
0 Model de persisténcia generat amb les entitats JPA, i les seves extensions modelats com entitats a mida
(EntityCustom)

e Subsistema mongodb: Conté tota la Iogica de negoci relacionada amb I'accés a BBDD

0 Classes per mapejar col-leccions i objectes
0 Classes amb logica: agregations i collections

Document d’Arquitectura Especificacio Arquitectura Pagina 52 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e Subsistema service: correspon a la capa de negoci de la Vista logica de 'apartat 5.1.1. Contingut:
O Interficies dels serveis
0 Implementacions dels serveis
Altres subsistemes:
e Subsistema audit: Conté la l0gica de negoci relacionada amb I'auditoria
0 Classes per personalitzar la informacié d’auditoria
e Subsistema Kafka: Conté tota la I0gica de negoci relacionada amb les integracions amb Kafka

0 Classes per mapejar missatges kafka
0 Classes amb logica: listeners i streams

e Subsistema reports: correspon a la capa de negoci de la Vista ldgica de I'apartat 5.1.1. Contingut:

0 Interficies dels serveis
0 Implementacions dels serveis

jus-[NOM_SERVEI]-service/src/main/java:
cat.gencat.justicia.[NOM_SERVEI]

.project (Aplicacio)
.common.audit (auditoria)
.common.crosscutting.exceptions (Excepcions)
.configuration (Configuracions)
.controller (REST Controllers)

.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]

.kafka (Kafka Listeners)
.model (Kafka Model)
.model (Domain Model objects)

.[AMBIT FUNCIONAL 1]

.[AMBIT FUNCIONAL 2]

.view (View Model objects)
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]

.extdto (DTOs amb serveis externs)
.adapter (View Model o Domain Model)
(ExternalDTO ¢ Domain Model)
.connector (Connectors per protocol)
.mongodb
.domain
.aggregations
.collections
.fields (Entities)
.custom (Extensions Entities)
.template
.dao (Interficies DAO)
.impl (Implementacions DAO)
.external (External DAO)
.reports (Reports)
.service (Interficies service)

.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.impl (Implementacions service)
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.shedlock (Tasques planificades)
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.security (Extensions JWT de cada modul)
.util

Document d’Arquitectura Especificacio Arquitectura Pagina 53 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Per tant, la part dinamica d’un projecte, i la del desplegable final, tindra aquesta estructura de components

Pkg implementation View : Project sources /" Pkg implementation View : Target deployable /"

jus-<nom_servei>service servei jar

0+ src)+ cat

= pom.xml 3+ META-INF
3+ BOOT-INF

Els fonts s’organitzaran als projectes segons s'indica a I'apartat Organitzacid dels packages - serveis.

Els Controller de la capa de distribuciéo només fan referéncia en compilacié al model de domini, i les interficies dels
Serveis associats amb els que comunica amb la capa de negoci.

Es Spring en temps de runtime qui fa la injeccié (@Autowired) dels components de negoci als controladors de la capa
REST.

Un Controlador REST no cridara mai directament a un servei d’un altre modul. Sempre delegara en un Servei aquesta
tasca, que alhora utilitzara un ExternalSystemDAO.

Els components encarregats de la integracié també accedeixen a la capa de negoci mitjangant injeccions Spring. De

nou, en compilacié accedeix a les interficies, i per injeccio d'Spring (@Autowired) en temps de runtime s’accedeixen
als serveis associats.

5.1.3.3 Organitzacio dels packages - capa de presentacio

La organitzacié dels packages a la capa de presentacié es descriu a I'apartat Vista d’'implementacié de la capa de
presentacio.

5.1.3.4 Organitzacio dels packages - serveis
Els noms dels paquets Java han de comencar amb cat.gencat.justicia.[NOM_SERVEI].
Els paquets han d’estar estructurats a partir d’aquest nivell segons aquests nivells jerarquics:

e Enprimer lloc, segons capes técniques (horitzontal)

e En segon lloc, segons ambit funcional (vertical): només si hi ha molts elements, i s’aplica a I'Gltim nivell de la
jerarquia (controller, view, etc):

Document d’Arquitectura Especificacio Arquitectura Pagina 54 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

jus-[NOM_SERVEI]-service/src/main/java:
cat.gencat.justicia.[NOM_SERVEI]

.project (Aplicacio)
.audit (auditoria)
.common.crosscutting.exceptions (Excepcions)
.configuration (Configuracions)
.controller (REST Controllers)

.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]

.kafka (Kafka Listeners)
.model (Kafka Model)
.model (Domain Model objects)

.[AMBIT FUNCIONAL 1]

.[AMBIT FUNCIONAL 2]

.view (View Model objects)
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]

.extdto (DTOs amb serveis externs)
.adapter (View Model o Domain Model)
(ExternalDTO ¢ Domain Model)
.connector (Connectors per protocol)
.mongodb
.domain
.aggregations
.collections
.fields (Entities)
.custom (Extensions Entities)
.template
.dao (Interficies DAO)
.impl (Implementacions DAO)
.external (External DAO)
.reports (Reports)
.service (Interficies service)

.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
Limpl (Implementacions service)
.[AMBIT FUNCIONAL 1]
.[AMBIT FUNCIONAL 2]
.shedlock (Tasques planificades)
.[AMBIT FUNCIONAL 1]
. [AMBIT FUNCIONAL 2]
.security (Extensions JWT de cada modul)
.util

Els Controller de la capa de distribucié només fan referéncia en compilacié al model de domini, i les interficies dels
Serveis associats amb els que comunica amb la capa de negoci.

Es Spring en temps de runtime qui fa la injeccié (@Autowired) dels components de negoci als controladors de la capa
REST.

Un Controlador REST no cridara mai directament a un servei d’'un altre modul. Sempre delegara en un Servei aquesta
tasca, que alhora utilitzara un ExternalSystemDAO.

Els components encarregats de la integracié també accedeixen a la capa de negoci mitjangant injeccions Spring. De
nou, en compilacio s’accedeix a les interficies, i per injeccié d’Spring (@Autowired) en temps de runtime s’accedeixen
als serveis associats.

Document d’Arquitectura Especificacio Arquitectura Pagina 55 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

5.2 CAPA DE PRESENTACIO - ANGULAR

5.2.1 Nomenclatura i responsabilitats

L'arquitectura de la capa de presentacid segueix la arquitectura estandard d'una aplicacié basada en Angular
composta pels seglients blocs principals:

© FrontEnd/Client Layer (Angular)
Maddul EJ Directva &) .

! P il
call Lartilly S:I .

S s

: L]
Usuani ; ’Ilr‘ 1
: aProperty Bindings !
: aEvent Bindings

i

Metadades & |

Component {] Injecior g:l

Meiad adw
. Q.=

Document d’Arquitectura Especificacio Arquitectura Pagina 56 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Les responsabilitats dels components d’aquesta capa son:

Component Responsabilitat Nomenclatura
Moduls Consoliden components, serveis i directives en blocs cohesius de | [Nom].module.ts
funcionalitat, cadascun centrat en una area de caracteristiques,
domini de negoci de l'aplicacio, flux de treball o una col-leccid
comuna de serveis.
Components Un component controla una part de la pagina denominada com a | [Nom].component.ts
vista (view). La logica del component es defineix dins una classe
—les funcionalitats per a controlar la vista—. El component
interactua amb la vista mitjancant les seves propietats i métodes.
Metadades Les metadades informen a Angular com processar una classe | @NgModule,
(modul, component, directiva, etc.). @Component,
@Directive
Plantilles Una plantilla defineix la vista (view) d'un component. Una plantilla | [Nom].component.html,
és un HTML que indica a Angular com representar el component. | [Nom].component.css
Directives Donen les instruccions a Angular de com transformar el DOM | [Nom].directive.ts
durant el procés de creacid de les vistes a partir de les plantilles.
Bindings Mecanisme per coordinar parts d'una plantilla amb parts d'un | N/A
component. Afegeix unes marques (binaing markup) a 'HTML de
plantilla per dir a Angular com connectar ambdds costats.
Serveis Implementen caracteristiques que son independents de | [Nom].service.ts

qualsevol vista especifica, proporcionen logica o dades
compartides a través de components, o encapsulen interaccions
externes.

Per a cada component es defineixen els segiients patrons arquitectonics:

Document d’Arquitectura

Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 57 de 115

HTIY Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

5.2.1.1 Moduls (Modules)

L'aplicacid Angular tindra com a minim una classe de tipus modul (Module): EI modul arrel (Root Module) i que,
seguint la convencid estandard, s'anomenara AppModule. A més del root module I'aplicacié estara composada per
moduls funcionals, cadascun com a un bloc cohesiu dedicat a un domini d’aplicacid, flux o conjunt de capacitats
similars. Un modul d’Angular, sigui el root o qualsevol altre, és una classe (TypeScript) amb @NgModule com a
decorator o metadada.

L'arquitectura modular de l'aplicacio esta composta pels seglients 4 tipus de moduls:

= Arrel (Root).

= Funcional (Feature).
= Core.

= Compartit (Shared).

Frant-End / Client Layes Angular)
=hladuls 5
AppModule [Root)
Simporta nomEs una
58 dursnt
eMibduls i .tqmwﬂnt. Wy 5
FaaturaAbl @ " Mgty [Risoy SJ Farencada de Faphcacs

(Funcional) 0. 1

aPlartillas s:] R

Business =

Component aladule s]

Template 1 CoreModule
sComponents | «Serve Singletons)
Business imports SampleAService
Companent

1
aServeis [T
Butiness Senvice
Ilr 1
aMiduls g)
SharedModule
sComponents =Plantillas
Ul Component EJ Ul Template s:]‘

@ Els moduls d’Angular no hereten 'accés als components o directives declarades a altres moduls. Per exemple,
tot el que sigui importat al Root Module AppModule és irrellevant per a un modul funcional i viceversa.

Document d’Arquitectura Especificacio Arquitectura Pagina 58 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

52111 Metadades
Les metadades d’'un modul d’Angular:

= Declaren quins components i directives pertanyen al modul.

= Fan algunes de les classes publiques per tal de que les plantilles d’altres components les puguin fer servir.

= |mporten altres moduls i els seus components, directives i pipes necessaris pels com-ponents en aquest
modul.

= Proporcionar serveis al nivell d'aplicacié que qualsevol component d'aplicacié pugui utilitzar.

Les metadades més importants que descriuen el modul sén:

= declarations - Las classes de tipus ‘view’ que pertanyen al modul. Angular té tres tipus de ‘view’' classes:
components i directives. S’ha de declarar cada component en una (i només una) classe NgModule. Cada
component creat al modul s’ha de incloure a I'array declarations.

= exports - El subconjunt de declarations que seran visibles i utilitzables a les plantilles (templates) d’altres
moduls.

= imports - Classes exportades per altres moduls | que sén necessaries per plantilles de components declarats
en quest modul. Només classes de tipus NgModule s’inclouen en el array imports. No es pot incloure
qualsevol altra tipus de classes en les importacions (imports).

= providers - Proveidors de serveis amb els que aquest modul contribueix a la colleccié global de serveis.
Aquest seran accessibles en qualsevol altra part de I'aplicacié Angular.

= bootstrap - La vista (view) principal de I'aplicacié, anomenada root component. El component root que
Angular crea i inserta a la pagina web principal index.html i a totes les altres views de I'aplicacio. Només el
modul Root ha de configurar la propietat bootstrap.

Document d’Arquitectura Especificacio Arquitectura Pagina 59 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

a.21.1.2 Modul Root

Tota aplicacid Angular té, com a minim, una classe de tipus modul, el modul Root. Com a convencid, el modul Root és
una classe anomenada AppModule i ubicada en un fitxer TypeScript anomenat app.module.ts. Altres caracteristiques
importants sén:

= Sexecuta el procés d’arrancada (bootstrap) d’aquest modul per tal d'iniciar I'aplicacié en un fitxer TypeScript
anomenat main.ts file.

= Entre d'altres coses, el procés d’arrencada (bootstrap) crea el component (0 components) inclosos en el
array bootstrap (metadata) i els inserta al DOM del navegador.

= (Cada component iniciat (bootstrapped) és la base del seu propi arbre de components.
= S'insereix el component arrel al iniciar I'aplicacid. Aquest procés d'arrencada (bootstrap) desencadena una
cascada de creacions de components que completen I'arbre de components de I'aplicacié. El component

arrel (root) s’anomenara seguint la convencié com a AppComponent.

S’'importen la resta de moduls funcionals, que representen col-leccions de funcionalitats relacionades, dins el modul
Root.

Document d’Arquitectura Especificacio Arquitectura Pagina 60 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.2.1.1.3 Moduls funcionals (Feature Modules)

Un modul funcional és una classe TypeScript amb I'anotacié @NgModule (decorator) i les metadades corresponents,
de la mateixa forma que es defineix el modul Root. Les metadades d’'un modul funcional tenen les mateixes propietats
que les del modul Root.

Existeixen dues diferéncies tecniques significants:

1. L'aplicacid Angular s'inicia arrencant el modul Root; Importem un modul funcional per tal d’ampliar la
funcionalitat de I'aplicacid.

2. Un modul funcional pot exposar o ocultar la seva implementaci¢ als altres moduls.
Altres consideracions importants respecte als moduls funcionals:

= Un modul funcional proporciona un conjunt de funcionalitats enfocades en un domini de negoci de
I'aplicacio, un flux de negoci, un servei (comunicacié HTTP, enrutament) o un conjunt d’utilitats relacionades.

= EI'moduls funcionals permeten particionar I'aplicacié en arees d’interes i propdsit especific.

= Un modul funcional col-labora amb el modul Root i la resta de mdduls funcionals mitjancant els serveis que
proveeix i el conjunt de components i directives que es defineixen com a exportacions.

= Un modul funcional i tots els seus components, plantilles (views), etc., estaran ubicats en un directori
especific separat per a diferenciar els elements que hi pertanyen respecte als del modul Root i la resta de
moduls funcionals.

= Pel que fa als components, cada modul ha d’importar les seves propies dependéncies sense tenir en compte
si les mateixes dependéncies es van importar al modul Root o en qualsevol altre modul funcional. Per
exemple, encara que tinguem multiples moduls funcionals, cadascun d’ells haura d’'importar el modul
d’Angular CommonModule.

Si tenim una aplicacié multi-modular s'implementara Lazy Loading. El gran avantatge del Lazy Loading és que podem
carregar els nostres recursos quan es necessitin i no tots alhora al iniciar I'aplicacié. Aixo ajuda a disminuir el temps
d'inici.

A continuacié es mostren convencions i bones practiques en I’ organitzacié dels Lazy Loaded moduls d'una aplicacié
Angular:

= Crear un modul NgModule per a cada area funcional (feature) ubicant el fitxer del modul en la mateixa
carpeta amb nom que l'area funcional. Aixo facilita I'Us del LazylLoading i la seva reutilitzacid.

= Collocar el contingut de funcionalitats lazy loaded en una carpeta que contindra un component
d’enrutament, els seus components fills, i els seus assets i mdduls relacionats.

Document d’Arquitectura Especificacio Arquitectura Pagina 61 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.2.1.1.4 Modul compartit (Shared)

El modul compartit incloura els components i directives comuns i les compartira amb els moduls que els necessitin.

= EImodul compartit es crea per a fer s comu de components i directives disponibles per al seu Us en les
plantilles dels components en molts altres moduls.

= No s’especifiquen proveidors de serveis singleton a nivell d'aplicacio (app-wide) en un modul compartit ja
gue un modul carregat de forma lazy (lazy loaded module) que importi el modul compartit faria la seva propia
coOpia del servei.

= Un modul compartit inclou només components i directives. No hauria d’incloure serveis. Els serveis estan
relacionats amb funcionalitats i en la majoria de casos no s’han de incloure en un modul compartit.

52.1.1.5 Modul Core
El modul Core és un modul que s’importara només una vegada en el moment d’iniciar I'aplicacié no s'importara enlloc

més.

= Els serveis de I'aplicacio de tipus Singleton que es registren exactament una vegada, en l'injector Root quan
s'inicia I'aplicacio, han de ser inclosos en el modul Core.

= Tots els components d'un sol Us que apareixen només a la plantilla del component Root AppComponent han
de ser inclosos en el modul Core.

= Només el modul Root ha d’importar el CoreModule en la seva qualitat d’orquestrador de I'aplicacid en el seu
conjunt.

Document d’Arquitectura Especificacio Arquitectura Pagina 62 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.2.1.2 Components

Un component és tot allo que és visible per a l'usuari i que pot ser reutilitzat multiples vegades dins de I'aplicacié
Angular. La logica d'un component es defineix dins d'una classe amb @Component com a decorator de TypeScript.

= Laresponsabilitat d'un component és limita a I'experiéncia d’usuari.

= Un component ha de fer d’intermediari entre la vista (plantilla) i la ldgica de l'aplicacié (que sovint inclou
alguna nocié d'un model).

= Un component ha de contenir propietats i méetodes per a l'enlla¢c de dades (data binding) i delegar tota

funcionalitat de negoci als serveis.

Des del punt de vista dels components I'aplicacid Angular pot ser modelada com un arbre de components anidats,
tenint cadascun un ambit aillat:

E «Components E] «Plantilla= :

' | Reot Component Root Template :

I {3 <x I

e — I — T

- =~
-

e AN e Ao
: «Components g:] «Plantillas - =Components 3:] «Plantillas :
. Child A Component Child A Template Vo Child B Component Child B Template X
: {} <> L {1 <> !

: «Components «Plantilla: .
i | GrandChild Component GrandChild Template .
: {} <> '

Cal diferenciar les responsabilitats entre els diferents tipus de components:

1. Components de tipus contenidor d’alt nivell i especifics d’'una aplicaciéo amb accés a model de domini de
I'aplicacio.

2. Components de presentacid responsables de la interficie d’usuari i del comportament de les entitats
especifiques de la seva API (propietats i events especifics del component).

Document d’Arquitectura Especificacio Arquitectura Pagina 63 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.2.1.2.1 Metadades (Metadata)

Les metadades informen a Angular sobre com ha de processar la classe. En TypeScript s’assigna el decorator
@Component a la classe per tal que Angular I'identifiqui com a component.

El decorator @Component permet modificar una classe i afegir-hi metadades a les propietats i a les funcions:

= Selector- Element (tag) que es fa servir per a informar Angular per tal de crear i inserir una instancia d'aquest
component.

= templateUrl - Ubicacio (relativa al mddul) de la plantilla HTML d’aquest component.

= providers - Col-leccié de proveidors (dependency injection) per als serveis que el component requereix.

5.2.1.3 Plantilles (Templates)

Les plantilles defineixen les vistes (views) dels components. Una plantilla (template) és una forma de HTML que
informa a Angular sobre com representar graficament el component.

= El component té les responsabilitats del controller/viewmodel, per la seva banda la plantilla representa la
view.

= | 'Us del'element (tag) <script> esta prohibit.

No cal incloure els elements <htmI>, <body> i <base>. La resta d’elements estandard de HTML estan acceptats.

5.2 1.4 Directives

Una directiva modifica el DOM per tal de canviar l'aparenca, el comportament o la disposicié dels elements inclosos
en el DOM. Les directives son un dels blocs basics de construccié d’aplicacions Angular. De fet, els components
d’Angular sén en gran part directives amb plantilles.

Hi ha tres tipus principals de directives a Angular:
= Component - Directives amb una plantilla.

= Atributs - Directives que canvien el comportament d’'un component o element pero no afecten a la plantilla.
hauria de funcionar de manera que el component és agnostic i al detalls d'implementacié: ngClass, ngStyle.

= Estructurals — Directives que canvien el comportament del component o element influint com es representa
(dibuixa) la plantilla. Directives estructurals incloses a Angular:
nglf : Obligatori I'Us de I'asterisc ().
ngFor: Obligatori I'Gs de I'asterisc ().1
ngSwitch: No incloure I'asterisc (*) amb ngSwitch.

*ngSwitchCase, *ngSwitchDefault: Obligatori I'is de I'asterisc (*).

Document d’Arquitectura Especificacio Arquitectura Pagina 64 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.2.1.5 Bindings

Els bindings son el mecanisme de coordinacié de parts d'una plantilla amb parts d'un component. S'afegiran bindings
a la plantilla HTML per tal d’informar a Angular com ha de connectar ambdds costats. Els bindings de dades sén
també importants per a la comunicacié entre components principals (pares) i secundaris (fills).

«Plantillss g:]

Template
< =

Property Binding Event Binding

«Zomponents @
Component

— 0 -
«Metads. . g:]‘

Metadata
{ template }

Com mostra el seglient diagrama, hi ha quatre formes de bindings de dades. Cada forma té¢ una direccié - cap al
DOM, des del DOM, o en ambdues direccions:

DO {] wComponents
fIvaluell Component

{3

| property | = "value™

[event) = "handler”
[{ ng-model) | = "property™
Document d’Arquitectura Especificacio Arquitectura Pagina 65 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya

Centre de Telecomunicacions

¥! i Tecnologies de la Informacid

La interpolacio {{value}} mostrara el valor de la propietat indicada del component com una cadena de text. Per
exemple: {SampleComponent.Name} mostraria el valor de la propietat SampleComponent.Name dins
I'element del DOM (per exemple dins d’un camp de text). Normalment es fa servir aquest metode quan es
tracta de passar cadenes de text com a valors.

El property binding [property] passa el valor de una propietat del component. L'is més comu sera el de
passar el valor d’'una propietat del component a una propietat d’un element del DOM. Per exemple: <img
[src] = “SampleUrl” (on “SampleUrl” és una propietat del component). Quan establim una propietat d'element
a un valor de dades que no sigui una cadena de text, s’ha d'utilitzar el tipus property binding.

El binding de event (event) enllaca una accié de I'usuari (per exemple un clic a un botd) a un métode del
component (handler).

El binding de doble sentit (Two-way binding) [(ng-model)] serveix tant per mostrar una propietat del
component com per actualitzar aquesta propietat quan l'usuari realitza canvis.

Direccio de les dades Sintaxi Tipus de binding
One-way {{expression}} Interpolation
from data source [target] = "expression” Property
to view target bind-target = "expression® Attribute
Class
Style
One-way (target) = "statement" Event
from view target on-target = "statement"
to data source
Two-way [(target)] = "expression” Two-way
bindon-target = "expression"

Document d’Arquitectura

Especificacio Arquitectura

JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 66 de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

52.15.1 Binding Targets

El desti (farged d’'un binding de dades és un element dins el DOM. Depenent del tipus de binding, el desti pot ser una
propietat (element | component | directiva), un event (element | component | directiva) event, o (rarament) un nom
d'atribut.

La segiient taula ho resumeix:

Tipus de binding \ Target \ Exemples
Property Element property
Component propert <hero-detail [hero]="currentHero"></hero-
omp property detail>
Directive property <div [ngClass] = "{selected:
isSelected}"></div>
Event Element event <button (click) = "onSave()">Save</button>

<hero-detail

Component event (deleteRequest)="deleteHero()"></hero-detail>

Directive event <div_ (myClick)="clicked=$event">click me</div>
Two-way Event and property <input [(ngModel)]="heroName">
Attribute Attribute (the exception) <button [attr.aria-label]="help">help</button>
Class class property <div [class.special]="isSpecial">Special</div>
Style style property <button [style.color] = "isSpecial ? 'red’
'green'">
Document d’Arquitectura Especificacio Arquitectura Pagina 67 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

52152 Events personalitzats (Custom events)
Per tal de generar events personalitzats s’ha de fer servir un EventEmitter d’Angular;

= Elcomponent crea un EventEmitter i I'exposa com una propietat.

= El component executa EventEmitter.emit(payload) per tal de disparar un event, passant com a parametre
informacio rellevant (pay/oad pot ser de qualsevol tipus).

Els components que tinguin definit un binding a aquesta propietat detectaran i tindran accés a la informacio rellevant
através de l'objecte event$.

5.2 1.6 Serveis

Servei és una categoria amplia que abasta qualsevol valor, funcié o caracteristica que sigui necessaria per a
I'aplicacio:

= Un servei ha de seruna classe amb un prop0sit concret i ben definit.

= Angular no té una definicié especifica per a serveis. No existeix una classe base de servei i no existeix cap
lloc a on registrar un servei.

= De forma general, els components son els consumidors del serveis.
= Les classes de tipus component han de ser simples. No han d’obtenir les dades des del servidor, validar

I'entrada dels usuaris o registrar informacié directament a la con-sola. Han de delegar aquestes tasques als
serveis.

Document d’Arquitectura Especificacio Arquitectura Pagina 68 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

5.2.1.6.1

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Injecciod de dependéncies (Dependency injection)

La injeccio de dependéncies és una manera de proporcionar una nova instancia d'una classe conjuntament amb totes
les dependéncies que requereix. La majoria de les dependéncies sén serveis. Angular fa servir la injeccid de
dependencies per a proporcionar als components els serveis que necessiten. Angular sap quins serveis necessita un

component examinant els tipus dels seus parametres al constructor.

Quan Angular crea un component, primer demana un injector per als serveis que el component requereix. Un injector
manté un contenidor d'instancies de servei que ha creat anteriorment. Si una instancia de servei sol-licitat no esta en el

contenidor, l'injector en crea una nova i l'afegeix al contenidor abans de tornar el servei a Angular.

Quan tots els serveis sol-licitats han estat resolts i retornats, Angular executa el constructor del component amb
aquests serveis com a arguments:

Injector

z]

| LeeT
- "

aComponents
SampleComponent

constructor [business Service |

2]

wServein wServeins wServein {] wServeis {]
Service A SampleBusiness Service Service C Service D
T
|
[
«SampleBusinessServices I_\.

Linjector crea una instancia
_| del zervei
SampleBusinessService |
lafeger al contenidor abans
de tornar el servel a Angular.
Angular executs &l
constructor del component
SampleComponent amb
squests instancis del servel
com a largument
businessService.

Cal afegir I'anotacio @Injectable() a la classe de servei per tal d’informar Angular que aquesta classe es pot fer servir
amb l'injector de dependéencies. Punts importants que cal recordar sobre la injeccié de dependéncia a Angular:

= Lainjeccio de dependéncia esta per defecte a Angular i s'utilitza a tot arreu.

= Uninjector manté un contenidor d'instancies de servei que ha creat.

= Uninjector pot crear una nova instancia de servei fent servir un proveidor (Provider).

= Un proveidor és una ‘recepta’ per a la creacio d'un servei.

= Siafegim el parametre { providedin: 'root' } en I'anotacid @Injectable, el servei es registrara directament en
I'injector root i d’aquesta forma no hem d’afegir el servei en l'array providers de I'AppModule o del

CoreModule.

= Tindrem una Unica instancia del servei (Singleton) tant si fem servir providedin: root o si incloem el servei en
I'array providers a I’AppModule o al CoreModule.

Document d’Arquitectura

Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 69 de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

h.2.2 Vista estatica

En el seglient diagrama de classes podem veure un exemple de quins son els diferents elements que intervenen en la
capa de presentacio:

‘ C ‘ ‘ | | FeatureAModule ‘ cimparte SharedModule |
- s |

eMetadadess eMetadadess «Metadadess «Meladadess

+ + cimports [+ exports, + @NgMedule(;: Metadades
T —

| | L o o o e : " —_—— !
} | I winstantiates {I‘f Wulns(aﬂl\E(E»
| winstantistes | |
! I 1 «Components «Companents «Components
| cinstartistes [FeatureAComponentA FeatureAComponentC SharedComponent
I | winstantistes =
} W eMetsdadess - SampleProperty: string <Metadadesn
| «Components > @'OHPU' "‘rE:EdE:‘dE: «Metadadess - — ==+ @Input: Metadades
+ tput: Met ¥ Y
| FeatureAComponents @0Output: Metadades : g\gp{u(.:.!,e‘lst:lad:ljs cuees | * @Output: Metadades
| A . o utput: Metadades
| * ceA. ced) + onCliscCancelar)
|| eMetadadess + ngOnDestroy() + SampleMethod(): string + onClicCercar
| |+ @input Metadsdes + ngOnlnit)) + SampleMethod2(): ViewhodelObject + onClicTomar()
} @0utput: Matadades 7| emstadagess «Metsdsdesn «Metadadess
| |+ constuctoriCommonServiceA) | + @c id, template): + @ module.id) C module. id):
! eMetadadass !
} + @c id, template) } 777777777777 P —
I T T I
| I suses 1 | T [«Components
} : ! : } BaseComponentA
1 ViewModelA H cusex H 1
; + SampleBsssProperty: string
} + SampleAthributeA: int ! } wugE } -
| |+ SampleAtribute: suing| *ue* | | cusen + SampleBaseliethod} int
I | I | | «Metadadess
I h 1 I 1 | - id, template):
i | | | |
W | suse 'l W 'l W
‘ Common ServiceA | ‘ Business Serviced | BusinessServiceA ‘
+ MethodA ityToken, int, string): Vi bjectd| |+ i) Vi bjec [+ All: string
+ CommonSampleMethodB(securityToken, int): sting +) Vi bjectd | +) int
+ BusinessMethodC{): boolean

Document d’Arquitectura Especificacio Arquitectura Pagina 70 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

5.2.3 Vista dinamica

En el seglent diagrama es mostra un exemple molt basic dels processos dinamics que s'executen entre els
components d'una aplicacio Angular des del navegador, enviant informacié a la capa REST del servidor i mostrant les
dades de nou al navegador:

sd 5001 - Accés a APIREST /
«@Component» «@lnjectable» «@Injectable»
SampleComponent| SampleBusinessService ApiService
Usuari Salut
(from/:\ctors) Brovlvser Anglular : : : API| RES'II' (Server)
| click event() | | 1 1 1 !
& . ! | | | !
! 1 1 | 1
call(handler) : : : : :
«event binding» onClick($event) 1 I | !
businessMethod() ! ! i
| |
applyBusinessLogic() : :
sendRequest(data) | :
POST (json) |
«HTTP Request»
< __________

|
alt / |
[HTTP STATUS = 400, 401, 500], :
|
|
|
catchError() I
Q !
|
|
|
|
|
J<-— - ————— !
applyBusinessLogic() T :
ke ————————— — jj 1 :

|
< [I I
- T | | !
. _P«data binding» s : : : :
I I I I I I I
1 1 1 ' ' ' 1

Document d’Arquitectura Especificacio Arquitectura Pagina 71 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

HTIY Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

5.2.4 \Vista d'implementacio

L'aplicacié Angular utilitzara una estructura basada en components, que és una bona manera d'assegurar-se codi facil
de mantenir, encapsulant la nostra logica de negoci. Un component és basicament una aplicacio independent en
general auto-continguda en un Unic arxiu 0 una Unica carpeta amb cada funcié com un arxiu: estil, plantilla, proves
unitaries, etc. i la classe de component. La segiient figura mostra I'organitzacié en carpetes de les diferents parts
d’una aplicacié Angular:

pkg Implementation View /

front-end

+angular.json
+index.html
+karma.conf.js

+ package.json
+tsconfig.json
+ tslint.json

src
= +maint.ts n
assets environments
= + polyfills.ts
= -
+tests. ts El +css + environment. prod.ts
= . =
D +fonts + environment.ts
D +images + hes.salut.gencat.cat.json
D +js + hes.salut.preproduccio.gencat.cat.json
+ hes.salut.intranet.gencat.cat.json
+ hes.salut.development.json
app

+app.component [css | html | ts] core

=] +app.module.ts
) + constants.ts y
+ app.routing.module.ts =l config
[= + core.module.ts
+ auth.component.ts . = .
s + cache.json
+ config.ts

=1 i
+log_local.json
= o+ j
log_remote.json

+home.component [html | ts]

feature-a
services model
+ feature-a-base.component.ts —
= +base.service.ts + capsalera-data.ts
+ feature-a-cerca.component.ts =) . = .
= + download-file.service.ts + cerca-peticions-resultat-ext.ts
+ feature-a-detall.component [html | ts] = = §
=) + error-manager.service. ts +jus-perfil-sse.ts
+ feature-a-llistat.component html | ts] = = X »
= + feat Mg + master-data.service.ts + llista-accions-peticio-ext.ts
[=] +feature-a.module.ts
) + propietats-aplicacio.service.ts + perfil-usuari-params. ts
+ feature-a.routing. module.ts =) o
= . + propietats-aplicacio.ts
+ feature-a.service.ts

shared
+index.ts
+shared.module.ts I i18n

+ base.component.ts +lang_ca.json
+ canvi-context.component [html | ts] +lang_es.json
=

+ detail-base.component.ts
+ forbidden.component [html | ts]

+ formulari-capsalera.component [html | ts]

+ page-not-found.component.ts

+ unauthenticated.component [html | ts]

Document d’Arquitectura Especificacio Arquitectura Pagina 72 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

A continuacio es descriuen les carpetes que formen I'aplicacié i la seva responsabilitat;

src: Directori arrel de la estructura de carpetes que conformen tots els components de I'aplicacid.
= assets: Carpeta on s’ubicaran els fulls d’estil, imatges i llibreries de JavaScript de tercers.

= environments: Carpeta con s’ubicaran els fitxers de configuracié i classes de definicié de parametres pels
diferents entorns.

= app: Directori arrel de la estructura de carpetes del codi de I'aplicacio.

= core: Directori arrel de la estructura de carpetes del codi de I'aplicacié que correspon al modul Core (Veure
Modul Core).

= shared: Directori arrel de la estructura de carpetes del codi de I'aplicacio que correspon al modul compartit
(Veure Modul compartit (Shared)).

= {18n: Conté els fitxers JSON que contenen els literals i missatges en els diferents idiomes de I'aplicacio.
= config: Carpeta amb fitxers de parametres de configuracié generals de I'aplicacié (no depenen de I'entorn).

= layout: Carpeta amb les classes i plantilles dels components que defineixen les diferents parts de les que es
composa el disseny visual de I'aplicacid.

= featureA: Carpeta que conté tots els fitxers necessaris del moddul funcional featureA (plantilla, modul
d’enrutament, codi de la classe del component, estils especifics, etc.).

Document d’Arquitectura Especificacio Arquitectura Pagina 73 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

524.1 Angular CLI

Es fara servir Angular CLI com a Unica eina de gestié durant el desenvolupament cobrint les seglients necessitats:

Generacié automatica de codi basic per a moduls, components, directives i serveis.
Gestio del Module Loader (WebPack).

Analisis estatic de codi TypeScript (via tslint).

Servidor de 'aplicacio per al desenvolupament en local.

Gestid de la configuracid dels tests unitaris.

Generaci6 de desplegable de 'aplicacio (build).

= Angular CLI és una interficie de linia de comandes que ajuda a crear nous projectes Angular des de zero o
agregar-ne diversos elements a una aplicacié Angular existent (scaffolding).

= El projecte es basara en un projecte base creat amb aquesta eina que contindra tots els elements necessaris per
posar tot en funcionament i amb una estructura d'aplicacions basada en les bones practiques per a un projecte

Angular.

= Peramés informacid sobre Angular CLI veure: https://github.com/angular/angular-cli/wiki

0.2.4.2 Generacio d'estils

S'utilitzara el framework ‘Bootstrap 4’ per tal de dotar a I'aplicacié d'un disseny que s’adaptara al dispositiu de 'usuari.
Els estils de I'aplicacid Angular estaran basats en fulles d’estil CSS generades a partir de fulles d’estil SASS.

SASS (Syntactically Awesome Style Sheets) és una extensio de CSS que permet I'Us de variables, importacié d’altres
fulls d’estil, regles CSS jerarquitzades, etc. Al mateix temps que manté la compatibilitat amb CSS. En concret es fara
servir la sintaxi SCSS per a la programacié de les fulles d’estil.

e Elprocés de generacio de fulles d’estil CSS a partir dels scripts SCSS estara gestionat per I'eina Angular CLI.

e Peramés detalls sobre SASS veure: https://sass-lang.com/

Document d’Arquitectura Especificacio Arquitectura Pagina 74 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.24.3 Proves unitaries

Per a la programacid i execucio de les proves unitaries de I'aplicacid Angular es faran servir les eines Jasmine i Karma
respectivament.

Karma és una eina que ens permet, directament des de la linia de comandes, carregar (iniciar) navegadors i executar
tests (per exemple, amb la llibreria Jasmine) dins d'aquestes instancies. Els resultats de les proves es mostren també a
la mateixa linia de comandes. Karma també és capa¢ de monitoritzar els arxius de codi en desenvolupament per
detectar-hi canvis i executar de nou les proves automaticament.

e FElprocés d’execucié dels tests unitaris mitjangant Karma estara gestionat per I'eina Angular CLI.
e Peramésinformacié sobre Karma veure: http://karma-runner.github.io/2.0/index.html

Per a la programacid de les proves unitaries de I'aplicacid Angular es fara servir el framework Jasmine. Els tests
programats fent servir el Jasmine descriuen les proves en un format llegible per a les persones, de manera que és més
facil d'entendre que esta sent provat.

e Encrearun nou component o servei via Angular CLI es creara també el test unitari corresponent (spec).
e Peramésinformacio sobre Jasmine veure: https://jasmine.github.io

Document d’Arquitectura Especificacio Arquitectura Pagina 75 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3 CAPA DE DISTRIBUCIO - SERVEIS REST

5.3.1 Serveis RESTFul

L’'arquitectura descrita en aquest document es basa en un model de serveis REST, enfocat en tractar la informacio i

les operacions com a “recursos”.

REST (REpresentational State Transfer) ens permet definir APIs de funcionalitats orientades a Internet, utilitzades per

qualsevol dispositiu capagc d’efectuar peticions per HTTP.

Es un model que aporta major simplicitat que altres solucions basades en crides SOAP, o RPC-XML. El servidor (back-
end) proveeix accés als recursos a través dels métodes exposats en la seva AP, i el client (front-end en HTML5)
gestiona aquesta informacio localment (en aquest cas, com hem indicat, amb el framework Angular).

Aquest tipus d’arquitectura, on el servidor no requereix guardar cap estat conversacional amb els clients que hi
accedeixen, es coneix com RESTful. Facilita I'escalabilitat de les aplicacions, i la carrega del servidor és menor.

Les operacions s'identifiquen per URI’s, i els recursos per identificadors globals. REST pot utilitzar diferents tipus de
representacio de la informacié intercanviada amb els seus clients. Actualment, JSON és el format més utilitzat, i €s en

el que es basara I'arquitectura REST de Justicia.

Amb REST, s'utilitzen els classics métodes HTTP per gestionar la informacié dels recursos de la nostra APl web:

¢ GET: proveeix accessos de només lectura als recursos

* POST: creacid de nou recurs

* DELETE: eliminacio de recurs

* PUT: modificacio de recursos

¢ OPTIONS: obtenir la llista d’operacions permeses en un recurs
Exemples: una APl de gestié de usuaris amb REST:

Consulta d’un usuari especific:

GET /modul-webcontext-root/rest/user/{id}

Consulta d'un llistat paginable d’usuaris:

GET /modul-webcontext-root/rest/user/list?rpp=5&first=0&filters={...}
Creacit d'un usuari:

POST /modul-webcontext-root/rest/user

FORM params: { idUsuari: ..., nomUsuari: ..., carrecUsuari : ...}

5.3.2 Bones practiques de disseny de serveis REST

Un servei és considera estrictament REST{ul si pot satisfer les seglients restriccions:

Document d’Arquitectura Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 76 de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Identificacid dels recursos: Els recursos individuals es troben identificats a les peticions mitjangant URIs. A més,
aquests recursos es troben conceptualment separats de la representacio que es retorna al client.

Manipulacié dels recursos per mitja de les seves representacions: El client -sempre que tingui permis i per mitja
de la representacié d'un recurs-, té prou informacié per a modificar o esborrar aquell recurs al servidor.

Missatges autodescriptius: Cada missatge intercanviat entre el client i el servidor conté la informacié necessaria
per processar-lo.

Separacié client-servidor: D'aquesta manera el client no es preocupa de I'emmagatzematge de les dades i aixi
s'aconsegueix que el seu codi font sigui més portable. Quant al servidor, no es preocupa de l'estat del client, fent
que aquest pugui ser més escalable. El desenvolupament del client i del servidor pot ser independent I'un de
I'altre mentre la interficie uniforme entre els dos no sigui alterada.

Stateless: La comunicacié client-servidor no requereix que el servidor hagi de guardar informacio del client entre
peticions consecutives. Com s'ha dit, cada missatge del client conté prou informacio per a satisfer la peticio.

Cacheable: Les respostes del servidor poden guardar-se en una memoria cache, sigui de manera implicita,
explicita 0 negociada. L'objectiu és minimitzar -en els casos en que sigui possible-, les interaccions client-servidor,
fent que el client accedeixi a la representacio del recurs guardada en cache i millorant el rendiment del sistema.

Layered system: El client no assumeix que hi ha una connexié directa amb el servidor final. Poden existir sistemes
software o hardware entre ells. Per exemple, hi pot haver un servidor intermedi que guardi en cache les respostes
del servidor. Un altre exemple seria el d'un servidor intermedi que actui com a balang de carrega, millorant
l'escalabilitat i minvant els danys davant la possibilitat d'haver de fer front a atacs de denegacié de servei (DDoS).
Altres elements situats entre el client i el servidor final poden ajudar a millorar les politiques de seguretat del
sistema.

Document d’Arquitectura Especificacio Arquitectura Pagina 77 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya

Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3.3 Nomenclatura i responsabilitats

Les responsabilitats dels components d’aquesta capa REST son:

Objecte Responsabilitats Nomenclatura
Sén els punts d’entrada al back-end de | xxxController.java
la nostra aplicacié web.
extends
JusticiaMainController.java
Es tracta d'una capa ‘“lleugera”.
Defineixen I'API de serveis disponibles,
i com accedir a la informacié dels
recursos exposats.
Controlador REST

(@RestController)

Els Controladors REST, per si mateixos,
només gestionen la seguretat de les
seves crides (autoritzacid, basada en
JWT), el tractament de les dades
d’entrada i sortida en format JSON, i els
codis de retorn HTTP.

Deleguen als serveis les crides a negoci
de laplicacié: accés a BD, o altres
moduls 0 components externs.

View Model

Representacié orientada a objectes del
model de parametres d’entrada i
sortida del serveis REST.

Aquesta informacié s’obté dels Serveis
en forma de Domain Model (o en altres
casos, Entities o extensions de les
mateixes), perd es fa una renderitzacio
previa al format Unic entre front-end i
back-end: JSON.

El View Model s'adaptara a les
necessitats de definicio de la nostra API
REST. En alguns casos, la
transformacié de View Model a o
Domain Model sera gairebé immediata.
Pero per altres tipus de servei, sera
necessari tipus més complexes per
retornar la informacio (llistats
paginables, ...)

xxxViewModel.java

View Adapters

Patrd Singleton. Aquests objectes

xxxViewAdapter.java

Document d’Arquitectura

Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 78 de 115

N Generalitat de Catalunya

Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

transformen els View Model en Domain
Model, en els dos sentits.

Spring boot aplication

(@SpringBootApplication)

El nostre model REST sera implementat
en tecnologia Spring boot. Indica el
puntinicial de la aplicacio.

xxxApplication.java

Web Security config Defineix la configuracié de seguretat de
Spring Security sobre I'APl REST a
(@Configuration nivell d’autoritzacio, gestio d’errors,
@EnableWebSecurity) securitzacio a nivell de paths, etc.
Classe que implementa la generacio, | JusticiaTokenHandler.java
Handler Tokens JWT validacio, i refresc de tokens JWT, i

també la gestid la informacid de 'usuari
que s’'emmagatzema en cada token

JusticiaTokenDetails.java

Control REST d’errors

Components proporcionats per Canigd
en el modul de REST, que modelen
totes les respostes possibles, i
gestionen de forma comuna es
excepcions, retornant el codi HTTP
adient:

200: OK
400: Bad Request
500: Internal Server Error

Etc...

JusticiaResponseEntityExceptionHandler.java
JusticiaBusinessException.java
JusticiaDataAccessException.java
JusticiaSystemException.java

JusticiaAuthenticationEntryPoint.java

Gestio de Swagger2

Contenidor ~ per configurar la
documentacio amb Swagger 2 en la
nostra API REST

JusticiaSwaggerConfig.java

5.3.4 Format JSON

JSON (Javascript Object Notation) és un format de text lleuger per a intercanvi de dades majoritariament utilitzat en
serveis REST, gracies a la seva simplicitat i pes reduit. Exemple estructura JSON:

{
"menu": {
"id": "file",
"value": "File",
"size": 1024,
"popup”: {
"menuitem": [

{
A
A

"value":

"value":

Document d’Arquitectura

"New", "onclick": "CreateNewDoc()"

"Open", "onclick": "OpenDoc()"

Especificacio Arquitectura

Pagina 79 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

"value": "Close", "onclick": "CloseDoc()"

En els projectes de Justicia, tots els serveis REST utilitzaran JSON com a format pels parametres d’entrada i sortida.

La transformacio de JSON a objectes Java és automatica per les aplicacions Spring Boot. El suport per la conversié de
missatges HTTP de Spring selecciona Jackson automaticament si ho troba al classpath de la aplicacio.

Document d’Arquitectura Especificacio Arquitectura Pagina 80 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3.5 Seguretat (JWT i Spring Security)

La seguretat en les crides a I'API de serveis REST estara implementada amb JWT (JSON Web Tokens) seguint els
estandards fixats per Arquitectura CTTl en quant a projectes Canigo 3.

Aquesta estara basada en tokens JWT en format OpenlD Connect.

Es delega en Spring Security la gestio de la seguretat, JNT es el mecanisme de transport de la informacid
d’autoritzacié de les crides, basat en tokens que es configura en Spring.

5.3.5.1 Configuracid Spring Security

S’han de configurar les propietats per tal que el Spring pugi comprovar la validesa d’un token rebut com part d’'una
sol-licitud d’execucié d’un servei. Aquestes propietats variaran d’un entorn a un altre, el seglient exemple es per un
entorn de desenvolupament;

spring:
security:
oauth2:
resourceserver:
Jwt:
issuer-uri: http://integracio.keycloak.justicia.intranet._gencat.cat/auth/realms/ejcat
Jwk-set-uri:
http://integracio.keycloak. justicia.intranet.gencat.cat/auth/realms/ejcat/protocol/openid-
connect/certs

S’ha de configurar la seguretat de I'API que exposa el servicio mitjancant la definicié d’'una classe anotada com
@Configuration de Spring Boot, on també es pot configurar el CORS.

@Configuration

@EnableWebSecurity

@EnableGlobalMethodSecurity(prePostEnabled=true)

public class XXXWebSecurityConfig extends WebSecurityConfigurerAdapter {

@Override
protected void configure(final HttpSecurity http) throws Exception {

http.oauth2ResourceServer() - jwt() - jwtAuthenticationConverter (JwtAuthenticationConverter()

)
http.exceptionHandling() -authenticationEntryPoint(new
JusticiaAuthenticationEntryPoint());
http
.sessionManagement() .sessionCreationPolicy(SessionCreationPolicy.STATELESS).and()
.cors()-andQ
.csrf().disable()
.authorizeRequests()
.antMatchers(
"*/v2/api-docs",
*"/configuration/ui”,

Y -permitAl1 Q)
.antMatchers(HttpMethod.OPTIONS) .permitAl1)
.anyRequest() .authenticated();

3

@Bean
CorsConfigurationSource corsConfigurationSource() {
final CorsConfigurationSource source =

return source;

Document d’Arquitectura Especificacio Arquitectura Pagina 81 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

Centre de Telecomunicacions

W Generalitat de Catalunya

¥L¥! i Tecnologies de la Informacié

5.3.5.2 Intercanvi de JWT entre client i servidor

Generalment, totes les crides REST de la nostra APl han d’estar protegides, amb intercanvi de tokens JWT en la
comunicacié HTTP.

Browser Server

POST /authenticate
usermame=_..&password=...

Y

A

HTTP 200 OK
{token: L. JWT...}

GET fapifuser
Authorization: Bearer ...JWT...

Y

validate
token

A

HTTP 200 OK
{ name: “foo”}

Un exemple (molt basic) de token JWT amb expiracid, credencials, i rols:

HEADER

eyJhbGeci01JIUzUxMiJ9.eyJ1eHALIOJEOODY2ZNTMw
NDIsInN1YiI6ImpvYW4ilLCJhdXRob3JpdGlleyI6I {

1JPTEVFVVNFU1J9. ZBhkgj9t28PS3-qp2JdjhaX-)

‘alg’: HS812’

ghLSEiWhbi5hDLb3kL6FXNW418aFF5VsogfAj1AC2
JrIjdzkWZ_rnsVtDxcXLgeyJhbGeci0iJIUzITNiIs PAYLOAD
InR5cCI6IkpXVCJ9.eyJzdWIi01iIxMjMBONTY30Dkw

TiwibmFtZSI6IkpvaG4gRGI1IiwiYWRtaW4iOnRyd
Wv9.TJVA950rM7E2cBab38RMHrHDcEfxjoYZgeFON
Fh7HgQ

Lautoritzacio de crides amb Spring Securityi JWT sera:

El servidor sempre verificara I'existencia d’un Headeramb nom “Authorization” en cada request a I’API REST.

El format d’aquest Headerha de ser “Bearer “ + token JWT. Exemple:

Bearer eyJhbGci0iJIUzUxMiJ9...

e Siel Headerno existeix, o el token JWT és incorrecte o esta expirat, es rebutjara la peticid.

e El control de la resposta de [lautoritzacid es delega en wuna classe Entry Point a mida
JusticiaAuthenticationEntryPoint, per centralitzar la tipologia i el format d’error a retornar. En tots
els casos, es recorda que la nostra APl REST sempre acaba retornant missatges JSON (excepte en casos
especifics d’ streaming de fitxers, que seran gestionats pel propi component de Canigo de File Upload)

e Spring Security utilitza les propietats definides per comprovar el token enviat a la Header és correcte i valid
utilitzant els serveis que proporciona Keycloak.

e Siel ftokenes valid Spring Security procedira a obtenir les credencials contingudes al token.

e Encas contrari, retornara un error genéric: 407. Unauthorized

Document d’Arquitectura Especificacio Arquitectura Pagina 82 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e Sies dona per valida la credencial associada al token, i disposa del permis correcte, permetra executar la
peticio. En la resposta, adjuntara un nou token de refresc, per evitar que I'original caduqui després d’enviar-lo
moltes vegades amb el servidor.

e En cas contrari, retornara un error genéric 407 : Unauthorized

Logicament, si tot el negociat de I'autoritzacid esta basat en un intercanvi de tokens, en algun moment cal definir el
punt d’entrada de 'usuari, i generacio del primer token.

Les aplicacions hauran de ser configurades per generar un primer token una vegada I'usuari ha superat el repte de
GICAR, utilitzant les capcaleres GICAR. A partir de la informacié de I'usuari que proporcioni GICAR, hauran d’obtenir
la informacié de l'usuari i amb aquesta sol-licitar a Keycloak la creacié del token JWT per l'usuari amb aquesta
informacio. La creacio d’aquest token proporcionara com a resultat tant el token com un token de refresc per poder
demanar un refresc del token quan estigui proper a caducar.

Al ser Keycloak qui proporciona els tokens, també es I'encarregat de fer les validacions. La configuracio de Spring
Security permet localitzar els serveis de Keycloak adients per tal que pugui fer aquestes tasques de validacié JWKS.

fauth/realms/e]cat/protocoliopenld-connectitoken

/<usuarls>/apl/userinfo {grant_type=cllent_credsntials)
{user_id) {user claims) _
_ (43 LOAK +———
e -+ Jus-portal-service =~ #---———--- W+ refreshtoken
User claims dRedirect + + refreshioken IWKs
sen re verification
IXXX/apl/... +
Cookies (IWT + refresh) /modu apl/
v Auth Bearer+ IWT
=
Jus-usuaris-service Microfrontend angular # 200 0K/ Jus-modulXXX-service

401 unauthorized

5.3.5.3 Refresh token

La sollicitud per refrescar el token es realitza des de frontend, en cas de detectar que I'access_token en curs es troba
proper a caducar. El servei consisteix en refrescar aquest token peridodicament, enlloc de fer-ho per defecte en cada
invocacio¢ al backend.

Des del frontend s'emmagatzema el refresh_token rebut al autenticar-se 'usuari amb el sistema.

Un servei del A-Component que realitzi la funcié de portal permetra intercanviar aquest refresh_token per un
access_token renovat i vigent. Aquest intercanvi es fara en un servei implementat al Keycloak, de tipus
grant_type=refresh_token.

Main apﬁngular WIT 2 refrescar

/partalfaplfrafrash lauth/realms/e]cat/protecolfopenid-connectitoken
(refreshtaken) {grant_type=rafresh_token)

[refresh token)
>0 OAK

Jus-portal-service
| IWT + refresh token

Cookies (JIWT + refresh)

Document d’Arquitectura Especificacio Arquitectura Pagina 83 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

Document d’Arquitectura Especificacio Arquitectura Pagina 84 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3.5.4 Canvi de context entre microfrontends

A aquest escenari es desitja, des de un microfronted Canigo 3.4 + Angular 9 anar cap a un microfrontend amb la
mateixa tecnologia i que utilitzi tokens JWT que siguin valids pels dos serveis.

Els projectes amb la arquitectura Canigo 3.4 + Angular 9, han d’utilizar la mateixa tecnologia. Aixi, les serveis de
backend utilizen Spring security configurat per adrecar les validacions de tokens JWT contra un endpoint OIDC del
nostre provider de seguretat OAuth2: el Keycloak.

Per tant, no cal fer cap transformacié de tokens, pero si proporcionar informacié al microfrontend origen sobre a quin
microfrontend desti s'ha de dirigir.

El modul desti haura d'oferir un servei REST que rebra la llista de parametres per preparar l'entrada al seu context, i el
token JWT per extreure les dades de I'usuari connectat.

La resposta sera una estructura comuna, amb la informacié de la URL desti del seu microfrontend (aquesta informacié
només la coneix ell, i és una propietat que tindra definida en el seu ConfigMap o application.yml) i els parametres
necessaris per entrar-hi (en cas de tenir-ne). S’ha de considerar que la informacié de I'usuari connectat es troba al
token JWT i que s’ha d’enviar a la capcalera Authoritzation per securitzar la crida al servei i per tant, no cal que estigui
definit com parametre d’entrada i el token s’ha de poder validar i processar pel backend desti.

Aixi el modul desti que permet que altre modul realitzi un canvi de context sobre ell (es a dir que defineix un
mecanisme per ser obert des de un altre microfrontend) ha de implementar:

Servei REST:

Endpoint url del servei Rest de canvi de context al desti. Per exemple: https://.../jus-modulDestiXXX-
service/api/XX/cc/entradaXXX

Com a minim una capcalera requerida Authoritzation amb el token JWT.

Cos: Format propi del cos segons les necessitats del desti per tenir la informacié necessaria per tal
de poder ser obert. Al seu backend s’implementa com una classe propia del model.

Resposta: Com resultat s’utilitza una resposta estandard que conté la informacié necessaria per tal
que el modul origen faci la crida cap al modul desti. Es tracta de la segiient classe de la llibreria

jus-canigo34-cloud-lib:
cat.gencat. justicia.common.model .cc.GenericCanviContextResponseViewModel

{
“routeTo”: “xxx”,
“params”:
{
“paraml”: “Xxx,
}
¥

Amb aquesta informacio el frontend origen pot realitzar el seu canvi de context per obrir el microfrontend desti.

Document d’Arquitectura Especificacio Arquitectura Pagina 85 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

{2) route . ?
> Fronte@origen " Frontend desti

{1) POST japlfcc/entradaXXX,

| Header: token JWT i
1 Body JSON: i
o i
i i
1 1
1 1

(parametres per preparar el cc}

v

Valldaclé token JWT 5 OAK
Backend desti -

{

RespanselSON: GenericCanviContextResponseViewMaodel

routeTo”: "xwx”,
“params”: {
“paraml”: “valorl”,

5.3.5.5 Canvide context de microfrontend cap a intranet del sistema EjCat.

Aquest escenari és més complex, doncs entren en funcionament les diferents arquitectures que tenim en els projectes

intranet d'EJCAT

Arquitectura

Funcionament de la seguretat

Canigo 1.4 Cookie administrada per Filters de la shared-library SSO.jar
Canigo 3.1 JSF

Canigd 3.2 REST Token JWT administrat pel modul JusTokenHandler-ear

Canigo 3.4 REST Token JWT validat via JWKS contra endpoint Oauth2 de KeyCloak

Els canvis de context entre moduls intranet d'EJCAT, on es combinen diferents arquitectures, els gestiona el modul
Portal implementat en Canigé 1.4 (d’aqui endavant : "POR-Canigo1.4").

Concretament, aguest modul ofereix un endpoint dins el seu MVC d'Struts per rebre peticions de canvis de context

entre moduls, i executar aquest canvi de modul:
https://. . ./portal/AppJava/canviContext.do?reqgCode=canviContextSSO

Abans de fer la crida al POR-Canigo1.4, perd, cada modul origen Canigd 3.4 + Angular 9 haura d'oferir un servei REST
per preparar els parametres del canvi de context.

Servei REST:

Endpoint url del servei Rest de canvi de context a l'origen. Per exemple https://.../jus-
modulOrigenXXX-service/api/XX/cc/preparaEntradaXXX

Com a minim una capcalera requerida Authoritzation amb el token JWT.

Cos: Format propi del cos segons amb la informacié necessaria per tal de poder preparar el canvi de
context. Al backend de I'origen s’'implementa com un DTO.

Resposta: Com resultat s’utilitza una resposta estandard que conté la informacid necessaria per tal
que el modul origen faci la crida cap al modul desti iniciant el canvi de context. Es tracta de la

seglent classe de la llibreria jus-canigo34-cloud-lib:
cat.gencat. justicia.common.model .cc.CanviContextResponseModel

{

"paramsCC': "

}

Document d’Arquitectura Especificacio Arquitectura Pagina 86 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Addicionalment, el mddul POR-Canigo1.4 necessita rebre també un token que NO sigui JWT (doncs aquest modul no

treballa amb aquest format) si no amb un format diferent que va ser definit al seu moment com Token de Canvi de
Context (o TokenCC).

Aquest token és comu, i per tant s’ha d’implementar un servei al modul Portal (li direm "POR-Cloud" en aquesta
endavant) que preparara finalment tota la informacié per la crida de canvi de context.
A més, la informacié ha d'estar codificada en un format concret, que el POR-Canigo1.4 pugui entendre.

Servei REST:

Endpoint url. Per exemple https://.../jus-por-cloud-service/api/XX/cc/tokenCC

Com a minim una capcalera requerida Authoritzation amb el token JWT.

Cos: Dades del canvi de context que es vol realitzar. S’ha d'utilitzar el format definit per la seglent
classe de la llibreria jus-canigo34-cloud-lib:
cat.gencat. justicia.common.model .cc.TokenCCRequest
{

"paramsCC™”: "'
"urlRetorn”: "'
}
= paramsCC: preparats pel servei REST anterior del mddul origen
= urlRetorn: route de frontend en cas que s'hagi de poder tornar del modul desti al modul
origen de nou. Aquesta informacid és una propietat que coneix el frontend.

Resposta: Com resultat s’utilitza una resposta estandard que conté la informacid necessaria per tal
que el modul origen faci la crida cap al POR-Canigo1.4. Es tracta de la segient classe de la
llibreria jus-canigo34-cloud-lib:
cat.gencat. justicia.common.model .cc.TokenCCResponse
{

"tokenCC": "
“urlCcC": ™
“paramsCC™”: **
¥
= tokenCC: és el token que POR-Canigo1.4 necessita per determinar qui esta demanant el
canvi de context
= urlCC: aquesta és l'adreca del servlet de POR-Canigo1.4 que hem indicat anteriorment que
s'ocupa dels canvis de context on mesclem arquitectures
= paramsCC: és possible que el POR-Cloud hagi d'incloure algun parametre addicional de
forma general per a tots els moduls MJ. Per aquest motiu, el servei retorna de nou aquest
parametre que ja havia rebut d'entrada.
{3)postuicc \ Weblogic
form perams: !
“params(C”: “xyz12¥", ! @ STRUTS
| “tokenCr™: “ABCDE..", | Modul Struts (CAN 1.4)
q STRUTS (4) sendRedirect &I |SF
Frantend arigen POR-Canigo 1.4 Madul JSF [CAN 3.1)
b [R) POST aplrc/iokeotl __________ ,
:::g:!ﬂmm:ﬁhm"ﬁ i Frontend desti (CAN 3.2)
{ '
“paramsCL”: “wyz123”, H
“uriRetorn™: "..." L U
HUPOST jeplfer/preparsid®. ____ 11 ! 1 ResponselSON: TakenCCRespanse :
1 Hesder: token IWT [I hislelpisislnivivisivivinivivisisisipisiyiviviuiat e H
| Body JSON: i 1 ResponselSON: CanviContestResponseModel | | "tokenCL": “ABCDE..", H
s H i { H | *paramsCL": "xyz1234ahc...” \
| [parimetres per prepararelce) | 1 “paramsCL: "xox* H 1 “uricc”: “.. fportal/Applava/canviContext.dofreqCoie=canviContextssa” |
A I : S ;

Backend origen POR-Cloud
————
Valldacls token PWT a OAK Valldaclé token JWT

Document d’Arquitectura Especificacio Arquitectura Pagina 87 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3.6.6 Canvide context intranet del sistema EjCat cap a microfrontend

L'escenari més habitual d'aquest tipus de canvi de context sera el de retorn.

Es a dir, un microfrontend fa un canvi de context a una aplicacié intranet d'EJCAT amb diferent arquitectura
(Canigo1.4+Struts, Canigo3.1+JSF, Canigo3.2+REST), i després s'ha de tornar al microfrontend.

No es contempla, funcionalment, que una aplicacié intranet EJCAT per si mateixa necessiti fer un canvi de context cap
a un microfrontend.

Partim de la base que l'aplicacidé origen (intranet EJCAT) ha obtingut un TokenCC, i s'ha fet un redirect al
microfrontend Angular.

El primer que necessita fer el modul desti es traduir aquest TokenCC (que es un format comu a totes les arquitectures
intranet EJCAT) en un parell de tokens JWT valids (access token + refresh token) i especifics per la seva arquitectura

Per aquest intercanvi, el mddul POR-Cloud oferira un servei REST de traduccié de tokens.

Aquest servei rebra el tokenCC, extraura la informacié de l'usuari (els seus claims), i invocara al proveidor d’identitats
per generar els tokens JWT valids per invocar al backend desti MJ.

Servei REST:
Endpoint url. Per exemple https://.../jus-por-cloud-service/api/XX/cc/validaTokenCC
No es possible enviar un token JWT, encara no tenim un i es el resultat d’aquesta crida.
Cos: El tokenCC rebut com a fragment. S’ha d'utilitzar el format definit per la segiient classe de la
llibreria jus-canigo34-cloud-lib:
cat.gencat. justicia.common.model .cc.ValidaTokenCCRequest

"validaTokenCC": "'<token CC>"

}

Resposta: Com resultat s'utilitza una resposta estandard que conté els tokens. El modul portal-cloud
s’ha d’encarregar d’obtenir aguests tokens del proveidor d’identitats. El resultat té el format de

la seglient classe de la llibreria jus-canigo34-cloud-lib:
cat.gencat. justicia.common.model .cc.AccessRefreshTokenResponse

{

"accessToken™: *'<token JWT>'",
"refreshToken': "'<token JWT>"

}

Weblogic | Header: toben JT: ValkloToksnCCRequest

1) sanalifeciirnct H i
@ sTRUTS { s ur-fragpment) L SR
POR-Canigo 1.4 Frontefid desti

1
1
i
§4) Cridies a worvels Ewuuauuﬂﬂmnnmmﬂ
‘amb sxeesTelmn
:

Backend desti POR-Cloud

YValkdacks fken AT o3

Document d’Arquitectura Especificacio Arquitectura Pagina 88 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

0.3.5.7 Canvi de context entre microfrontends i alfres sistemes

Aquest cas d'Us de moment no es contempla: que es pugui fer canvis de context entre, per exemple aplicacions
Extranet del sistema EjCat, i entraria en un segon abast de requeriments en cas de necessitar aquesta funcionalitat.

Document d’Arquitectura Especificacio Arquitectura Pagina 89 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3.6 Definicid dels Controllers i els métodes de I'API RESTHul

Totes les classes que siguin contrelles s’anotaran amb @RestController i poden extendre de la segiient classe
abstracta inclosa en la llibreria justicia-canigo3.4-cloud-lib, que ofereix un tractament comu de temes com per exemple
la paginacié amb Spring Data:

cat.gencat. justicia.common.controller._JusticiaMainController

Cal definir en la configuracio de l'aplicacid el context path dels serveis que s'exposaran en la nostra API. Aquest path
ha de tenir versionat obligatori en la seva nomenclatura.
server:

servlet:
context-path: /api/vl

Amb la configuracié anterior, els nostres serveis estaran accessibles a partir de:

https://NOM_MODUL . namespace.domini/api/vl/. ..

Tal com s’explica a la guia [CU_ARQO22_Gestié_d_excepcions] de gestid d’excepcions cada aplicacié ha
d’'implementar una classe anotada amb @ControllerAdvice a la que gestionar les excepcions propies de cada
aplicacid. Es pot extendre la classe de la llibreria justicia-canigo3.4-cloud-lib si és aplicable el tractament per defecte

d’algunes de les excepcions.
cat.gencat. justicia.common.control ler.JusticiaResponseEntityExceptionHandler

Aquesta classe s'ocupa de convertir les excepcions en missatges d'error unificats, segons la internacionalitzacié (i18n)
del modul, i retornar l'estructura d'error unificada (codi i descripcid de l'error). En el nostre cas, utilitzem el
seglietnDTO de Canigo:

cat.gencat.ctti.canigo.arch.web.rs.response.ResponseError

Document d’Arquitectura Especificacio Arquitectura Pagina 90 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3.7 Exposicio de I'API REST amb Swagger

Swagger 2 és un framework de disseny i documentacié d’API’s de serveis REST. Permet generar de forma senzilla i
intuitiva la documentacié dels serveis publicats en cada modul : mostrant model de dades d’entrada i sortida, les
capcaleres, codis de retorn, etc...

El seglient T-Component comu d’Arquitectura per configurar Swagger 2. Es tracta d’una classe amb les anotacions
@Configuration i @EnableSwagger?2 que es troba a la llibreria comuna jus-canigo34-cloud-lib

cat.gencat. justicia.common.configuration.JusticiaSwaggerConfig

Un cop arrencat el projecte amb Spring Boot, es pot consultar la documentacié generada de I'API en el segiient
endjpoint:

.. ./swagger-ui ._html
També es pot recollir en format JSON, per importar-la en eines com Api Manager:

.../v2/api-docs

Document d’Arquitectura Especificacio Arquitectura Pagina 91 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

5.3.8 Stack de logging distribuit

Al desplegar les nostres aplicacions en contenidors, resulta dificil gestionar la consulta dels logs que aquests
generen, ja que aquesta informacio es volatil i lligada a la vida del propi contenidor.

Per aquest motiu, disposarem de I'stack EFK (ElasticSearch+FluentD+Kibana) per consultar els logs.
Els serveis han d’assegurar que escriuen els seus logs per sortida estandard, en format JSON.

Un agent de FluentD recull els logs de cada contenidor, i els indexa en una base de dades ElasticSearch,
optimitzada per a consultes rapides de text.

Finalment, s’habilita una eina web Kibana per consultar aquests logs, segons diferents parametres de filtre
(aplicacid, contenidor, nivell de traca, timestamp,...)

log
collector i
'@' M luentd| |

— indexing

POD log ‘
aggregation
mlllz%tm - _w B

% Yiventa elasticsearch kibana
POD

]E ; log

hluentd B
FOD

PersistentVelumeClaim

Per altre banda, per fer la tracabilitat d’'una operacié que pot passar per diferents serveis, es configurara un
agregador addicional de logs anomenat Jaeger, que posteriorment permet fer visualitzacions agrupades de logs
pertanyents a una mateixa invocacio, a través d’identificadors interns basats en Spring Steuth.

Document d’Arquitectura Especificacio Arquitectura Pagina 92 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3.9 Vista estatica de la capa de distribucio REST

Al seglient diagrama de classes podem veure els diferents elements que intervenen en aquesta capa:

cmp logical view — Distribution layer REST /

| “BSpringApplication™ |

“dlomponcatscan”

=

spring boot spring security Jjus canigo34 cloud lib

| e

“LontextNevotiatinavizwiesohvers™ N
'| ObjectManper) | Springhpplication |
Web!
J

“@tonl
e .
v
SecurityLo
prssalion®
urity”™
ureale

.
jus cinign3d clold lib /l\
f’ ey

“@Conlguration” ,;"" I “@Conlguration” l l “@Coni reles Advier” “@Con rodles Advier™
JusticiadpgCortig 4 JusticisSwaggerConfiz iciaRess Sty Excepti 2 I1 | RecursRespors sEntityEceptiontandler |

| e ’\ lusticizAuthenticationFrtryPoint ‘

[STeT10H
nfimuraridaster |

[e ‘4 Justicatranted wthoritesbxtractor

“@les Comirolier™] o
RecursController r
s /\‘"‘- e
" e
“Serinlizable”
—| RecursiewModd ‘ | RecursViewModalAdaptar

En fons blanc sén els components ubicats en llibreries incloses amb Canigo 3:
e Spring-boot: incorpora l'aplicacié Spring, els mecanismes d’autoconfiguracié de Spring boot i una
configuracié basica del processador dels missatges d’entrada i sortida a format JSON (ObjectMapper)
e Spring-security: incorpora tota la gestié de la seguretat, el proveidor d’autenticacid i autoritzacio.
En fons groc marguem els T-Components fets per Arquitectura. Pel cas de REST, la llibreria és:
e jus-canigo34-cloud-lib: diferents T-Components comuns per la capa de distribucié REST dels moduls.

Els REST Controllers, sén els objectes que acaben formant la definicié de la nostra API de serveis, amb les seves
diferents operacions: indicant el format d’adreca (URI), la ubicacié dels parametres, els metodes acceptats, i el format
de resposta de cada un (JSON principalment).

Els @RestControllers enllacen amb la capa de negoci a través dels Business Components (annotacié @Service), que
actuen com a Service Facade de comunicacié amb altres moduls, o d’accés a la base de dades.

Els objectes retornats per aquests BC sempre seran de tipus Domain Model. Els View Model Adapters s’ocupen de
transformar-los al model definit en la nostra API REST, i els identifiquem com View Model objects.

Els Controllers s’ocuparan també del tractament dels codis de retorn HTTP adients segons el resultat de I'operacié.

Els moduls importaran la configuracié de Swagger a efectes de documentacié de la seva API REST.

Un cop inclos el context de configuracid, I'API de REST sera publicada també en format Swagger 2, i aquest podra ser
editat pels diferents editors de Swagger existents.

Document d’Arquitectura Especificacio Arquitectura Pagina 93 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3.10 Comunicacio entre la capa de distribucid REST i la capa de negoci

La capa REST no fara cap invocacio directa a la base de dades o a altres serveis.

Aquesta responsabilitat es delegara sempre a la capa de negoci de l'aplicacio, en els Components que tenen

I'annotacid @Service:

org.springframework.stereotype.Service;

Per tant, els REST Controllers Unicament contacten amb els Components injectats amb Spring directament emprant

I'anotacidé @Autowired:

org.springframework.beans.factory.annotation.Autowired

| amb els View Model Adapters faran una transformacié de les dades rebudes o enviades a la capa de negoci

(DomainModel), per adaptar-ho al model de dades dels serveis REST.

Exemple d’un Controlador REST de serveis per un recurs de Paisos, amb enllag al seu Components corresponent, i

tractament de I'adapter:

package cat.gencat.justicia.exemple.project.controller;

import
import
import
import
import
import
import

import

org.
org.
org.
.springframework.
cat.

org

cat
cat

cat.

springframework.
springframework.
springframework.

gencat.justicia.

.gencat.justicia.
.gencat.justicia.

gencat.justicia.

@RestController
@RequestMapping({"/pais"})
public class PaisController extends JusticiaMainController {

/** pais service */

@Autowired
PaisService paisService;

beans.factory.annotation.Autowired;
web.bind.annotation.RestController;
web.bind.annotation.RequestMapping;
web.bind.annotation.ResponseBody;
exemple.model.view.PaisViewModel;
exemple.model.view.adapter.PaisAdapter;
exemple.model.domain.PaisDomainModel;

exemple.project.service.impl.PaisService;

@RequestMapping(value = "/traduccio/{codiIdioma}/{paisId}",
method = RequestMethod.GET,

produces =

@ResponseBody
public ResponseEntity<PaisViewModel> getTraduccioPais(@PathVariable("codiIdioma") String
codiIdioma, @PathVariable("paisId") String paisId) {

PaisDomainModel domainPais = paisService.getTraduccioPais(paisId, codiIdioma);
return ResponseEntity.ok(PaisAdapter.adapt(domainPais));

i3

Document d’Arquitectura

"application/json; charset=UTF-8")

Especificacio Arquitectura Pagina 94 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.3.11 Vista d'implementacid

A continuacio es presenta un diagrama de la vista d'implementacié enfocat només a la capa REST.
Per un costat tenim la implementacio en els projectes, i per altre, la llibreria de T-Components comu per REST:

Pkg Deployment Package Layout — Distribution Layer (REST) /

src

main.java/cat.gencat.justicia.<aplicacio>.project Jus-canigo34-cloud-lib

configuration cat.gencat justicia.common.configuration

controller cat.gencat.justicia.common.controller
cat.gencat.justicia.common.sccuri
model 8 b R
adapter

.main.resources

Document d’Arquitectura Especificacio Arquitectura Pagina 95 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.4 CAPA DE NEGOCI

5.4.1

Nomenclatura i responsabilitats

Les responsabilitats dels components d’aquesta capa REST son:

Objecte Responsabilitats Nomenclatura
Son els objectes cridats pels controllers i que es | xxxController.java
responsabilitzen de realitzar I'execucio de logica de negoci. Si
Servei necessiten accedir a bases de dades ho demanen a la capa | extends
(@Senvice) d’'accés a dades
JusticiaMainService.java
Deleguen als data access objects les crides d’accés a dades i a
altres serveis I'execucid de logica de negoci d’aquells serveis.
Representacié d'un objecte que representa el format d’un
Data Transfer conjunt d’informacid, un POJO.
Object (DTO) Aquesta informacio s’intercanvia entre els Serveis i altres serveis
0 entre els serveis i els controllers.
Data Access | Son els objectes responsabilitzats del accés a les dades. Sén | JusticiaMongoGenericDAQ.java
Object (DAQ) executats des dels serveis.
A un model de base de dades documental, un document es
I'element d’accés a la informacio.
Document
A MongoDB la informacié s’'emmagatzema en col-leccions de
@Document

documents que poden ser polimorfics. Un Document pot
contenir altres documents com part d’ell.

Document d’Arquitectura

Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 96 de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.4.2 Vista estatica

class Static View - Negoci
e e | | kel
Sampha ExtamalDAD h_. ar . n_,l samphDAD
i y
T
E R
prre—— | SamplaDaoimpl I
_| bt (St maboushc, Unmonivion) Mobond I
- o=
L]
Oirpl
)
jus canignid cloud lih spring datz
SE——— --_ ------ IS CANIgD. choay I spring data
1
| ExtModelAdapter I JusMongoGenerkDAD | ————- \4 MongoTemplate: |
o T e I
L — extiTOIdamainbode] ECDTON: Domain Mod 1
Connactor T i
?-.ﬁ -ﬂ? = \ i =Y L’.
= N = | 2 S | .l — |
I = = samplaDomainhodel 1
i -

El negoci es modelat mitjancant la definicié de serveis de negoci. Distingirem entre la seva interficie (Service) i la

implementacio (Servicelmpl).
Els parametres dels métodes de negoci poden ser
- Objecte de domini (DomainModel)

- Tipus basics o primitius Java.

Un “Service” pot invocar a altres “Services” durant 'execucié del seu metode de negoci. També pot invocar al T-
Component DAO per tal d'interaccionar amb BBDD o External DAO per interaccionar amb sistemes externs. Per
entorns de desenvolupament, pot ser interessant utilitzar “Mock Objects” quan es tinguin limitacions de connectivitat.

Especificacio Arquitectura Pagina 97 de 115

Document d’Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

5.4.3 Vista dinamica

Dynamic View - Negoci yd

“Surviee” “Sevice” “Dialis Ay “Dala Accesy
samplelSenace sampledsennce Ubject” Ubjact”
Sampl=1080 Samplz20A0

| - NO TRANSACTICGN
|
1

Mt) SarrilaDersie Ml

g i
SamplliurusinMue H

i i A § TRANIACTION - RECUIRED

SampleEntityl

NO TRANSACTION

SampleEntity2

Sampienomakbiods

Cal destacar del diagrama anterior:

e Pertal de resoldre el cas d’'Us, el controlador REST (RESTController) invoca a un Servicelmpl que fara dos
accions independents. Primer realitza una cerca sense englobar-la dins una transaccid per obtenir un
determinat objecte del model. Posteriorment es crida a un altre Servicelmpl que inicia una transaccié per tal
de insertar un nou objecte a base de dades

5.4.4 \Vista d’implementacio

A continuacid es presenta un diagrama de la vista d'implementacié enfocat només a la capa de Negoci.

Document d’Arquitectura Especificacio Arquitectura Pagina 98 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Pkg Deployment Package Layout — Business Layer /

src

main.java/cat.gencat.justicia.<aplicacio>.project jus-canigo34-cloud-lib

model cat.gencat.justicia.common.mongodb

extDTO
adapter

connector

mongodb

domain

template.dao

service

impl

.main.resources

En el package model.extdto estaran els objectes de domini de serveis externs modelats com DTO’s, dins el package
servcice trobarem els components de negoci necessaris per tal d’'implementar els casos d’Us especificats.
Les entitats de comunicacio amb la base de dades (Document) estaran al package mongodb

Document d’Arquitectura Especificacio Arquitectura Pagina 99 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya

Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.5 CAPA D’INTEGRACIO

5.5.1 Nomenclaturai

responsabilitats

Les responsabilitats dels components d’aquesta capa REST son:

Objecte

Responsabilitats

Nomenclatura

KafkaStreams

Definicio dels elements de comunicacio amb Kafka

xxxKafkaStreams.java

KafkaListener

Component responsable de romandre a I'espera de I'arribada
d'un missatge pels elements de comunicacid definits i de
gestionar i processar el missatge .

Es responsable de la gestid dels errors.

xxxKafkaStreams.java

KafkaSender

Component responsable de I'enviament de missatges utilitzant
els elements de comunicacié definits.

xxxKafkaSender.java

Spring boot aplication

(@SpringBootApplication)

El nostre model REST sera implementat en tecnologia Spring
boot. Indica el punt inicial de la aplicacio.

xxxApplication.java

5.5.2 Vista estatica

La vista estatica corresponent a la vista l0gica d'integracio és:

Document d’Arquitectura

Especificacio Arquitectura
JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 100 de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

I
- - -2
class Static View - Integracio yd
“@SpringApplication”
“@ComponentScan”™
lication
H
spring boot create jus canigo34 cloud lib
'
“@Configuration” use
“@EnableBinding” IR > JusticiaKafkaStreams < *******
StreamsConfi
SpringApplication 0.1_,."';'
: e P
H o~ use >3 JusticlakafkaMessage
i . I 7 5! <
-~ R - N
: e = ! use
H . s
i “@Component” extends T e
V Simphli fcalistenar usticia alistener
component-scan H S
1use B
\/ |
ﬂ ----- TELEIVE = —moo o momeemeeeeeeed
DomalnModel Kafka
<—-—- send —— ;
[0]
juse]
“@senvice” extents > JusticiaKafkaSend use
SampleServiceKafkaSender usticizRalasender
: use
Y l'n_ B e
VN Y use
_Cell {REST) ~. . ﬂ _Gall (REST}_~ “@RestController” extends s
ApiManager > HaoursControfier —b JusticiaMainController
Yy e
< Call (REST). @SEWI{ERETS g % JusticiaMainController
Sistema Extern 4
A N 0.®
| g
U cinegrationservice” &l | “@5evice” ‘ | extenda | histiciaMainCantrollar
Call {xoi SampleRest2 w000 C iNoRESTSer

A la capa d'integracid, s’explica els mecanismes pels cuals els sistemes externs poden accedir als serveis interns.
Existeixen 2 tipus principals d’integracio cap als serveis de negoci:
e Asincrona: els serveis poden utilitzar els T-Components (JusticiaKafkaListener) de la llibreria jus-canigo34-
cloud-lib per rebre missatges de Kafka.

Sincrona: per tal que serveis externs puguin demanar I'execucid de serveis de negoci interns s’han de
acomplir diferents condicions:
0 Els serveis interns poden ser accedits de manera directa o via Api Manager segons les diferents
opcions exposades al cas d’us CU_ARQOQ26 Accés a serveis negoci.
0 Elsistema extern ha de consumir el servei utilitzant el protocol REST.

Per tal que des de els serveis interns es pugin consumir serveis de sistemes externs temin els seglents tipus principals
d’integracio:
e Asincrona: els serveis poden utilitzar els T-Components (JusticiaKafkaSender) de la llibreria jus-canigo34-
cloud-lib per enviar missatges cap a Kafka.
Sincrona; els protocol de comunicacions soportat pels serveis intenrs es el REST per aixé hem de distingir:
0 Servei extern utilitza protocol REST: els serveis poden executar directament aquest servei.
0 Servei extern que no utilitza protocol REST: a aquest cas, s’ha d’utilitzar un mecanisme de traduccid
que sigui responsable de rebre la crida REST que genera el servei intern (Integration Service),
traduir de protocol REST al protocol del servei desti i de realitzar I'execucid al protocol del servei

desti. La implementacié d’aquest servei d’integracié sera responsabilitat del servei que té la
necessitat de realitzar I'execucié remota.

Document d’Arquitectura Especificacio Arquitectura

Pagina 101 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacié

5.5.3 Vista dinamica

A tots els casos, el client o el desti de la comunicacié a la capa d’integracio no sera la capa de presentacid, siné un
sistema extern o eina d’intercanvi de missatges.

Dynamic View — Rebre missatge Kafka /
(e [| (o] o |
| e |

gl Acssags, headers:Map)

tractar

sampleMethod{dm:SampleDomalniodel)

Quan el sistema rep un missatge des de Kafka i existeix un KafkaListener esperant la seva arribada, el missatge es
processat pel T-Component JusticiaKafkaListener i enviat cap a SampleKafkaListener que s’encarrega de realitzar les
tasques de negoci necessaries en relacio al messatge rebut.

Dynamic View — Enviar missatge Kafka /
Kafka
E emhrﬁampHJM(SMmmsLe) E
i ge(s Karth st:\-ﬂmdl, Kkatiah Message, head, B
KafkaMessage

Quan des de la logica de negoci apareix la necessitat de realitzar una comunicacié asincrona mitjangant un missatge
Kafka, el servei de negoci delega aquesta tasca cap al servei d’enviament de missatges a Kafka que ho realitza
utilitzant les funcionalitats del T-Component JusticiaKafkaSender.

Document d’Arquitectura Especificacio Arquitectura Pagina 102 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Dynamic View — Servei intemn des de Sistema Extern - Internet /

g] “Service”
ApiManager SamplaService
Skstema Extern R ler

'
i
]
i
]
—

y————--
]-_._________

demand boken (yim_lyma‘.llmr_u'u!mtlal“ i

IWTTaken

cell to exterrial AP1 {dm:SampleDomainiviadel}

call Internal API {ém:SanmplaDomainModel)

ResponsaDomelinhMade|

Ay

rasponss (db

—f
S

Quan un sistema extern necessita consumir un servei intern des d’Internet, primer de tot ha d’obtenir un token JWT
que ho identifiqui i després ha de fer la crida mitjangant I’API exposada pel APl Manager. L’API Manager realitza la
subseglent crida cap al Controler que gestiona I’API. El controller gestiona aquesta crida i executa la logica de negoci
que sigui adient i torna la resposta cap a I'’API Manager. Per ultim, '’API Manager retorna la resposta cap al sistema
extern.

Dynamic View — Servei intern des de Sistema Extern - Intranet /
Identity Provider SampleService
Sisterma Extern
i i i
_ e pormor—c iiocs)
i) 1 |

Quan un sistema extern necessita consumir un servei intern des de I'Intranet, primer de tot ha d’obtenir un token JWT
que ho identifiqui de I'ldentity Provider i després ha de fer la crida cap al Controler que gestiona I'’API. El controller
gestiona aquesta crida i executa la l0gica de negoci que sigui adient i torna la resposta cap al sistema extern.

Document d’Arquitectura Especificacio Arquitectura Pagina 103 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Dynamic View — Crida Servei REST extern

“Service”
SampleService

REST cal {dm SampleDamal nviade [}

Per realitzar crides cap a serveis REST de sistemes externs, la execucid es realitza directament des de un servei de

negoci encarregat d’aquesta tasca.

Dynamic View — Crida Servei No REST extern

/

“Service”
SampleService

REST wall {drn:SernpleDuamulnioded)

“integration servics™
Sarm pleRestanm

NO RCST call (dn SampleBomelniade)

—4

Si el servei extern al que s’ha de cridar no utilitza el protocol REST, s’ha d'utilitzar un servei d’'integracié al que es
cridat pel servei de negoci utilitzant el protocol REST de manera que el servei d’integracio es responabilitza de fer les
traduccions necessaries i la crida cap al servei del sistema extern amb el seu protocol. Quan rebre resposta, el servei

d’integracid s’encarrega de que el servei de negoci rebi la resposta amb protocol REST.

Document d’Arquitectura

Especificacio Arquitectura

JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 104 de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

5.5.4 Vista d'implementacio

A continuacio es presenta un diagrama de la vista d'implementacié enfocat només a la capa d’integracio.

Pkg Deployment Package Layout — Business Layer /

SIC

main.java/cat.gencat.justicia.<aplicacio>.project jus-canigo34-cloud-lib

configuration
controller

model

service

impl

kafka

model

.main.resources

cat.gencat.justicia.common.kafka

cat.gencat justicia.common.kafka.model

Al package kafka s’'ubicaran les classes especifiques per
comunicacions els controllers aniran al package controller i els services al package service.

Document d’Arquitectura Especificacio Arquitectura

JUS_Canigo3.4_CloudNative v1.4.doc

les comunicacions amb Kafka. Per la resta de

Pagina 105 de 115

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

6 DECISIONS D’ARQUITECTURA

6.1 DECISIONS ARQUITECTONIQUES

6.1.1 Plataforma de contenidors

Aliigual que els sistemes de virtualitzacié tradicionals, els contenidors requereixen d’un sistema de gestié sobre el que
executar els elements virtualitats. Com plataforma gestora dels contenidors, es va escollir Red Hat® OpenShift® és
una plataforma de contenidors Kubernetes empresarial que ofereix el CPD corporatiu de referéncia pel departament
al moment que es va definir aquesta arquitectura i per tant la que s’ha d'utilitzar per part dels desenvolupaments.
Kubernetes es pot considerar el gestor de contenidors estandard de facto a la industria al mateix moment.

6.1.2 Dades compartits entre serveis vs Dades propetat d’un Unic servei

Un dels principals objectius de I'arquitectura és reduir I'acoblament entre els serveis.

El fet de tenir dades compartits a la base de dades implica diferents parts del sistema tenen accés directe a la
informacio compartida. També significa que canvis al model de les dades compartides podem implicar afectacions a
les parts del sistema que accedeixen a aquests dades.

Per reduir I'acoblament a nivell de dades entre els diferents serveis, a aquesta arquitectura les dades seran
propietaries d’un Unic servei i es aquest servei el responsable del manteniment d’aquestes dades. Si un altre servei
necessita aquelles dades les tindra que demanar al servei propietari.

Aquesta decisid te implicacions importants fins al punt que el disseny funcional ha de dividir el negoci de manera que
els dominis de negoci de cada servei puguin estar desacoblats i de manera que el disseny ha de evitar que una dada
de negoci sigui propietaria de més d’un servei. Una metodologia que facilita aquest tipus de disseny és el Disseny
Orientat al Domini o DDD (https://www.domaindrivendesign.org/).

Si cal compartir dades entre serveis o creuar dades existira una BBDD de consulta on es podran crear col-leccions
amb dades de diferents serveis 0 on podran coexistir dades de diferents col-leccions per tal de poder fer creuament
de dades entre diferents negocis. Aquesta decisio es detalla més endavant.

6.1.3 Base de dades Relacional Oracle vs Documental MongoDB

Al moment de dissenyar aquesta arquitectura els principals sistemes del departament utilitzen una base de dades
Relacional Oracle RAC.

Els clients d’aquesta arquitectura sén aplicacions basades amb Javascript que utilitzen el framework Angular 9.
Aquests clients utilitzen models de dades en format JSON.

Com eina per tractar de reduir 'acoblament a nivell de base de dades, es va seleccionar una base de dades
Documental. Va ser escollida pels desenvolupaments MongoDB 4.2. Es una base de dades Documental i la seva
eleccié implica canviar la manera de fer els dissenys dels models de dades dels serveis.

Un des motius pel que es va seleccionar a partir de la versio 4.0 MondoDB va comencar a donar suport a transaccions
multi document. Aquest tipus de transaccions a les que mdultiples documents d’una o diverses col-leccions de
documents s’han de poder actualitzar de manera Unica (es a dir, s’ha de garantir que o es realitzen totes les
modificacions de la transaccid o no es realitza cap d’elles).

Document d’Arquitectura Especificacio Arquitectura Pagina 106 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Un altre motiu es que es va evolucionar Canigd 3.4 de manera que es van incloure els drivers de MongoDB
compatibles amb la versié 4.2 i que habiliten I'Us de les capacitats de transaccionalitat sobre mdltiples documents a
una unica transaccio.

MongoDB es una base de dades Documental a la que no existeix un esquema predefinit per determinar el format dels
documents d'una agrupacié de documents (anomenada col-leccid). Aquesta capacitat per tenir multiples estructures
als documents permet realitzar canvis d’estructura de manera progressiva en lloc de tenir que fer els canvis de manera
massiva com s’ha de fer a les bases de dades relacionals. Els documents s’'emmagatzemen en format BSON.

A diferencia de les bases de dades relacionals, a MongoDB les relacions i les regles de consisténcia de les dades a la
base de dades no son gestionades directament pel motor de la base de dades. Aixd dona més flexibilitat al moment
de realitzar modificacions a la base de dades. Per un altre costat, I'esfor¢ de garantir la consisténcia de les dades
recau al disseny i la implementacioé dels canvis de les dades sense suport per part de MongoDB.

Encara que la utilitzacio de BBDD MongoDB és prioritaria per als nous serveis desenvolupats, si el negoci d’un nou
servei es considera critic aquest podria fer servir BBDD Oracle i no MongoDB. Aquesta decisié s’haura de prendre en
les fases inicials del projecte i caldra ser validada amb els responsables de la solucié al Departament.

6.1.4 BBDD de consulta

La BBDD de consulta sera una BBDD MongoDB consultable pels serveis que ho requereixin on hi haura dades de les
diferents BBDD dels serveis. Aquestes dades poden estar normalitzades o replicades i les podrem trobar com a
colleccions independents amb estructures iguals o similars que a les bases de dades dels serveis, 0 bé les podem
trobar amb altres estructures. Podrem trobar dades desnormalitzades de diferents col-leccions agrupades en una, o
també grans colleccions que permetin obtenir d’'una tacada conjunts de dades de diferents serveis en una sola
consulta.

Aquesta BBDD permetra realitzar consultes creuant diferents negocis.

6.1.5 APl Manager

Aquesta decisié de disseny esta relacionada amb els casos d'us CU_ARQO01, CU_ARQO002, CU_ARQOQ3 i
CU_ARQO11 i CU_ARQ029

Es va detectar la necessitat de un component que doni resposta a les seglients responsabilitats:
e Ser la porta d’entrada per crides de sistemes externs que necessitin executar serveis oferts des de les
aplicacions de la present arquitectura.
e Proveir d’'una capa externa de seguretat
o Realitzar enrutament cap a sistemes interns

La decisio final ha estat fer Us del Api Manager Corporatiu IBM Api Connect
e (Gestionat de manera transversal per una Oficina
e Contacte directe amb els seus responsables i equip de manteniment
e Totalment alineat amb normativa CTTl i els seus estandards de Qualitat i Seguretat

Document d’Arquitectura Especificacio Arquitectura Pagina 107 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

6.1.6 Service Mesh

Aquesta decisi¢ de disseny esta relacionada amb el cas d’us CU_ARQO11 Invocaci¢ a altres serveis sincrons

Els diferents serveis de la arquitectura tenen necessitat d’intercanviar informacié entre ells i amb tercers. A
arquitectures tradicionals, es responsabilitat dels propis serveis la gestié dels fluxos de trafic entre serveis, el control
d’'accés i la recollida de traces de I'execucid del intercanvi de la informacio. Existeixen productes que habiliten la
possibilitat d’externatlitzar dels serveis, en major o menor mesura, alguna o totes aquestes resposablitats.

La plataforma de virtualitzacio de contenidors que disposa el departament de Justicia es un Openshift de RedHat i per
tant, per raons de compatibilitat amb la plataforma i per tenir suport del fabricant, s'escull utilitzar el Service Mesh
d’Openshift per oferir respostes a aquestes necessitats.

El Service Mesh d’Openshift esta basat sobre el projecte open source Istio. Istio permet realitzar aquestes tasques
sense modificar les aplicacions directament, amb un llenguatge de configuracié propi i es compatible amb
Kubernetes.

Istio utilitza Envoy Proxies per realitzar la instrumentalitzacié de les comunicacions. Es poden utilitzar Virtual Services
per realitzar tasques sobre la informacié obtinguda al proxy.

Document d’Arquitectura Especificacio Arquitectura Pagina 108 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

HTIY Generalitat de Catalunya
Centre de Telecomunicacions
¥L¥! i Tecnologies de la Informacié

Service A Service B

discovery discavery
configurathan confliquratian
certiticates certificates

Istio
control plane

6.2 AVALUACIO DE TECNOLOGIES

6.2.1 Implementacid de serveis RESTful
Per laimplementacid de la capa REST s’han considerat tres alternatives pels projectes de Justicia.

e Apache Camel (http://camel.apache.org)

o JAX-RS “Jersey” (https://jersey.java.net)

e Spring (https://spring.io/guides/gs/rest-service)

Finalment, s’ha escollit 'opcid d’'Spring, per la seva compatibilitat amb els frameworks Canigo 3.4 i Swagger 2.

6.3 DECISIONS SOBRE COMPRA / DESENVOLUPAMENT /
REUTILITZACIO

El criteri general que es seguira al projecte durant les avaluacions sobre noves necessitats tecnologiques es basara en
el criteri de decisions MBR (Make-Buy-Reuse). La decisié final sempre estara consensuada entre Arquitectura i el
Departament de Justicia.

Document d’Arquitectura Especificacio Arquitectura Pagina 109 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

F Generalitat de Catalunya
Centre de Telecomunicacions
¥l i Tecnologies de la Informacid

«Campetiion External
Enwiron mernt ~fogilability of Supplizrs

+Political Bements

Social Bements

i Triggers i

«Cost reduction =Focus inwestment
«Lack of capacity - .l capakilties
*Reduce time to market =thills shorage
sInzreasze quality _ _ > shorease responsiveness
«Mew Praduct troduction | MAKE-OR-BUY? |

Techl:;c-lc-g],r Supply Chain Suppor
. Cost Management & PP
Marnufacturing Logistics Systems
Processes 9
Technology and equipment “Supplier selection Dality s yetem
“Shills to perbrm the process /—\ “Cost reduction actvities with *IRrmaion systems
“Technical shills (sappert)) aupplier Engineering changes system
i *Production =Apauisition ian wi i *Training schemes
-Owrership ofthe process ot M «Callaboration with suppliers ng =cre
-gbililt_grw cope with wl. cranges cost -Eeliuarg.r | ﬁ;%muesmpmrmm
«Ouality measures “heritony contro
o o *Technical support
Lozt savings .
it Ll Performan oz “Laality
Capacity utilisation Moy oo “Flesibility

«Time: to market
_—;____'_'_'_,;—_

‘Ezonomical Bements 'El‘lggorperrnl;nﬁl
6.4 PUNTS PENDENTS
Document d’Arquitectura Especificacio Arquitectura Pagina 110 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

7 OPERACIO, ROLLOUT | GESTIO APLICACIO

En aquest capitol es consideren els aspectes de desplegament i posada en marxa (rollout), operacié i gestié de
I'aplicacio en termes dels seus efectes sobre I'arquitectura i a I'inrevés.

7.1 ROLLOUT

Cada aplicacié haura de desplegar els artefactes descrits a 5.1.2. Vista de desplegament, tant a entorns de
desenvolupament, com a entorns client.

Caldra seguir els procediments de pujada de codi i desplegaments a entorns client definides pel SIC (Servei
d’Integracié Continua https://canigo.ctti.gencat.cat/sic/)
El proveidor també ha de proporcionar al Departament els segiients documents de la fase de rollout (plantilles MQS):
e Manual d’Instal-lacié (en cas que tingui particularitats no esmentades al Manual d’Instal-lacid general del
sistema d’informacio)
e Manual d’Explotacid (en cas que tingui particularitats no esmentades al Manual d’Explotacid general del
sistema d’informacio)

7.2 OPERACIO

Consultar al Portal MQS els procediments i plantilles relacionades amb I'operacié del CPD (principalment, Manual
d’Explotacio):

e Manual d’Explotacio (MEX): només cal realitzar un d’especific per a cada servei si té particularitats no
recollides en el document general de Manual Explotacié del sistema d’informacié. Hauria de contenir els
seglients elements:

0 Politica de backups
Parametres de monitoritzacid (quins servidors, quins elements)
Ubicacio dels fitxers de log que es generen
Llistat i descripcid dels processos planificats existents al sistema
Processos de manteniment (esborrats periodics de fitxers temporals, etc.)
Procediment de validacié de desplegament
Seqliencies d’aturada i arrancada del sistema

O O0OO0OO0OO0Oo

7.3 GESTIO DE L’APLICACIO

La gestio de 'aplicacio es refereix a totes aquelles tasques que son necessaries pel manteniment, hotline, correccié
d’incidéncies, i realitzacio de futurs evolutius del sistema.
e Qualsevol incidéncia productiva arribara via 'eina de ticketing Remedy, per tal que 'equip desenvolupador
pugui atendre-la, i quedi registrada la posterior evolucio
e (Cal respectar el procediment de versionat de releases en entorns client, segons I'especificat a MQS
https://qualitat.solucions.gencat.cat/estandards/estandard-versions-programari/

Document d’Arquitectura Especificacio Arquitectura Pagina 111 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

T

! Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

8 APENDIX

8.1 DOCUMENTACIO DE REFERENCIA

e CU_ARQO01_ARQ002_ARQO03_ARQO11_Seguretat

Guia dels casos d’us relacionats amb la seguretat

e CU_ARQO04 - Accés a capa de distribucid REST (extensio cloud)
e CU_ARQO04.1 - Accés a capa de distribucié REST (guia base)
Guies dels casos d'Us d’accés a la capa de distribucié REST

e CU_ARQO05_Canvi_de_Context_(backend)

Guia de canvi de context al backend.

e CU_ARQO06_Swagger

Guia d’Us de Swagger.

e CU_ARQO009 - Accés a capa de negoci

Guia d’accés a la capa de negoci

e CU_ARQO10-AccésaBBDD

Guia d’accés a base de dades

e CU_ARQO010.1 - Desnormalitzacié i modelatge del model de dades
Guia de desnormalitzacio i modelatge del model de dades

e CU_ARQO11_Invocacié_a_altres_serveis_sincrons

Guia d’'invocacio a altres serveis sincrons

e CU_ARQO12_lInteraccio_cap_a_sistemes_externs_(capa_negoci)
Guia d'interaccio cap a sistemes externs des de la capa de negoci.

e (CU_ARQO13 Cache

Guia d’Us de cache

e CU_ARQO14_Editor_de_documents

Guia del editor de documents

e CU_ARQO15_Signatura_Electronica

Guia de la signatura electronica

Document d’Arquitectura Especificacio Arquitectura Pagina 112 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

TN Generalitat de Catalunya

Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

e CU_ARQO16 Procés Asincron

e CU_ARQO16.1 Accés a eines de comunicacio asincrona
Guies d’eines de comunicacio asincrona.

e CU_ARQO17 Reporting

Guia de reporting

e CU_ARQO18 Monitoritzacio

Guia de monitoritzacio

e CU_ARQO19_Enviament_de_correus

Guia d’enviament de correus

e CU_ARQO020_Logging_distribuit

Guia de logging distribuit

e CU_ARQO21 Auditoria

Guia d'auditoria

e CU_ARQ022_Gestié_d_excepcions

Guia de gestié d’excepcions

e CU_ARQO023_Actualizar_configuracions_en_calent
Guia d’actualitzacio de configuracions

e CU_ARQO24_Notificacions_PWA_backend

Guia de notificacions PWA part backend.

e CU_ARQO25_Transaccionalitat_i_SAGA

Guia de transaccionalitat i SAGA

e CU_ARQO026 Accés a serveis negoci des de sistemes externs
Guia d’accés a serveis des de sistemes externs.

e CU_ARQO27 Processos Batch

Guia de processament batch

e CU_ARQO028 ARQ Integracio Capa Dades

Guia d'integracio a capa de dades

e CU_ARQO029 Swagger APl Manager

Document d’Arquitectura Especificacio Arquitectura

JUS_Canigo3.4_CloudNative v1.4.doc

Pagina 113 de 115

TN Generalitat de Catalunya

Document d’Arquitectura

Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

Guia de configuracio de Swagger APl a API Manager.

e CU_ARQO30 (ANNEX ATEC) - Guia navegacio tecnica

Guia de navegaci6 técnica ATEC

e CU_ARQO030-31 - Interficie grafica

Guia de casos d’Us de la interficie grafica

e CU_ARQOQ34 - Canvi de context

Guia de canvi de context a frontend

e CU_ARQO35 - Monitoritzaci6 capa client
Guia de monitoritzacié a capa client.

e CU_ARQO36 - Microfrontends

Guia de microfrontends

e CU_ARQO37 - PWA

Guia de PWA a capa client.

e CU_ARQ_32-33 - Capa de presentacio (general)

Guia general de la capa de presentacio.

Especificacio Arquitectura Pagina 114 de 115

JUS_Canigo3.4_CloudNative v1.4.doc

N Generalitat de Catalunya
Centre de Telecomunicacions
¥! i Tecnologies de la Informacid

8.2 GLOSSARI DE TERMES

e A-Component: components no lligats a la tecnologia. La ldgica funcional de I'aplicacié és encapsulada aqui.
Els tipics elements podrien ser components per a la gestié de tramits judicials, etc.

e T-Component: components d’arquitectura que utilitzen la infragstructura técnica per tal de proveir serveis

gue son requerits per I'aplicacid. No contenen elements especifics del domini funcional de I'aplicacid. Els

tipics elements podrien ser componenets per a SSO, Autenticacid, Autoritzacid, Accés a cues JMS, etc.

DAO: Patro de disseny Data Access Object

DTO: Patré de disseny Data Transfer Object

JMS: Java Message Service

JSON: JavaScript Object Notation

JWT: JSON Web Tokens

OSB: Oracle Service Bus

POJO: Plain Old Java Object

POJI: Plain Old Java Interface.

QA: Quality Assurance

REST: Representational State Transfer

SSO: Single Sign-On

XML: Extensible Markup Language

Document d’Arquitectura Especificacio Arquitectura Pagina 115 de 115
JUS_Canigo3.4_CloudNative v1.4.doc

